BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shuai C, Liu G, Yang Y, Yang W, He C, Wang G, Liu Z, Qi F, Peng S. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf B Biointerfaces 2020;185:110587. [PMID: 31648118 DOI: 10.1016/j.colsurfb.2019.110587] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
Number Citing Articles
1 Zaszczynska A, Sajkiewicz P, Gradys A. Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers (Basel) 2020;12:E161. [PMID: 31936240 DOI: 10.3390/polym12010161] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
2 Luciana Aurora Soares do Amaral D, de Souza Salomão Zanette R, Torres de Souza G, Augusto da Silva S, Adriano Kopke de Aguiar J, Fortes Marcomini R, Márcio Resende do Carmo A, Valentim Nogueira B, José da Silva Barros R, de Sá Silva F, de Oliveira Santos M, Munk M, de Mello Brandão H, Magno da Costa Maranduba C. Induction of osteogenic differentiation by demineralized and decellularized bovine extracellular matrix derived hydrogels associated with barium titanate. Biologicals 2020;66:9-16. [PMID: 32561214 DOI: 10.1016/j.biologicals.2020.06.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang S, Huang X, Feng J, Qi F, E D, Jiang Y, Li L, Xiong S, Feng J. Structure, compression and thermally insulating properties of cellulose diacetate-based aerogels. Materials & Design 2020;189:108502. [DOI: 10.1016/j.matdes.2020.108502] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
4 Hedayati SK, Behravesh AH, Hasannia S, Bagheri Saed A, Akhoundi B. 3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polymer Testing 2020;83:106347. [DOI: 10.1016/j.polymertesting.2020.106347] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
5 Shuai C, Yu L, Yang W, Peng S, Zhong Y, Feng P. Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold. Polymers (Basel) 2020;12:E199. [PMID: 31940986 DOI: 10.3390/polym12010199] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
6 Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020;19:69. [PMID: 32883300 DOI: 10.1186/s12938-020-00810-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
7 Wang N, Liu X, Shi L, Liu Y, Guo S, Liu W, Li X, Meng J, Ma X, Guo Z. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater Sci 2020;8:1604-14. [DOI: 10.1039/c9bm01426h] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. Adv Sci (Weinh) 2021;8:e2004393. [PMID: 34166584 DOI: 10.1002/advs.202004393] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Tang Y, Chen L, Duan Z, Zhao K, Wu Z. Enhanced compressive strengths and induced cell growth of 1-3-type BaTiO3/PMMA bio-piezoelectric composites. Mater Sci Eng C Mater Biol Appl 2021;120:111699. [PMID: 33545858 DOI: 10.1016/j.msec.2020.111699] [Reference Citation Analysis]
10 Yang C, Wu H, Li G. Bioactive ophiopogonin release form bioglass-collagen-phosphatidylserine scaffolds to enhance bone repair in vitro. Materials Letters 2020;265:127436. [DOI: 10.1016/j.matlet.2020.127436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Yang C, Song S, Chen F, Chen N. Fabrication of PVDF/BaTiO3/CNT Piezoelectric Energy Harvesters with Bionic Balsa Wood Structures through 3D Printing and Supercritical Carbon Dioxide Foaming. ACS Appl Mater Interfaces 2021;13:41723-34. [PMID: 34431292 DOI: 10.1021/acsami.1c11843] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Qin T, Li X, Long H, Bin S, Xu Y. Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials (Basel) 2020;13:E2268. [PMID: 32423078 DOI: 10.3390/ma13102268] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Shuai C, Xu Y, Feng P, Zhao Z, Deng Y. Hybridization of graphene oxide and mesoporous bioactive glass: Micro-space network structure enhance polymer scaffold. J Mech Behav Biomed Mater 2020;109:103827. [PMID: 32543399 DOI: 10.1016/j.jmbbm.2020.103827] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020;8:10221-56. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Shuai C, Yang W, Yang Y, Pan H, He C, Qi F, Xie D, Liang H. Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response. Mater Res Express 2020;7:015404. [DOI: 10.1088/2053-1591/ab62f5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
16 Yang Y, Peng S, Qi F, Zan J, Liu G, Zhao Z, Shuai C. Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Mater Sci Eng C Mater Biol Appl 2020;116:111195. [PMID: 32806327 DOI: 10.1016/j.msec.2020.111195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Shuai C, Yuan X, Yang W, Peng S, He C, Feng P, Qi F, Wang G. Cellulose nanocrystals as biobased nucleation agents in poly-l-lactide scaffold: Crystallization behavior and mechanical properties. Polymer Testing 2020;85:106458. [DOI: 10.1016/j.polymertesting.2020.106458] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
18 Wang H, Zeng X, Pang L, Wang H, Lin B, Deng Z, Qi ELX, Miao N, Wang D, Huang P, Hu H, Li J. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. Chemical Engineering Journal 2020;396:125081. [DOI: 10.1016/j.cej.2020.125081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
19 Yang Y, Zan J, Yang W, Qi F, He C, Huang S, Peng S, Shuai C. Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold. Mater Chem Front 2020;4:973-84. [DOI: 10.1039/c9qm00772e] [Cited by in Crossref: 45] [Cited by in F6Publishing: 1] [Article Influence: 22.5] [Reference Citation Analysis]
20 Cai K, Jiao Y, Quan Q, Hao Y, Liu J, Wu L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound. Bioact Mater 2021;6:4073-82. [PMID: 33997494 DOI: 10.1016/j.bioactmat.2021.04.016] [Reference Citation Analysis]
21 Shuai C, Zeng Z, Yang Y, Qi F, Peng S, Yang W, He C, Wang G, Qian G. Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Materials & Design 2020;190:108564. [DOI: 10.1016/j.matdes.2020.108564] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 19.0] [Reference Citation Analysis]
22 Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021;80:105567. [DOI: 10.1016/j.nanoen.2020.105567] [Cited by in Crossref: 61] [Cited by in F6Publishing: 7] [Article Influence: 61.0] [Reference Citation Analysis]
23 Shuai C, Zan J, Yang Y, Peng S, Yang W, Qi F, Shen L, Tian Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Materials Science and Engineering: C 2020;108:110486. [DOI: 10.1016/j.msec.2019.110486] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
24 Shuai C, Li S, Peng S, Yang Y, Gao C. Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation. Int J Bioprint 2020;6:248. [PMID: 32782985 DOI: 10.18063/ijb.v6i1.248] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Mahmud MAP, Adhikary P, Zolfagharian A, Adams S, Kaynak A, Kouzani AZ. Advanced Design, Fabrication, and Applications of 3D-Printable Piezoelectric Nanogenerators. Electron Mater Lett . [DOI: 10.1007/s13391-021-00327-3] [Reference Citation Analysis]
26 Deng Z, Chen J, Lin B, Li J, Wang H, Wang D, Pang L, Zeng X, Wang H, Zhang Y. A novel 3D printed bioactive scaffolds with enhanced osteogenic inspired by ancient Chinese medicine HYSA for bone repair. Experimental Cell Research 2020;394:112139. [DOI: 10.1016/j.yexcr.2020.112139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021;45:75. [PMID: 33760193 DOI: 10.3892/or.2021.8026] [Reference Citation Analysis]
28 Zhang B, Guo L, Chen H, Ventikos Y, Narayan RJ, Huang J. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. Journal of the Mechanical Behavior of Biomedical Materials 2020;104:103665. [DOI: 10.1016/j.jmbbm.2020.103665] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
29 Gao C, Li S, Liu L, Bin S, Yang Y, Peng S, Shuai C. Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting. Journal of Magnesium and Alloys 2021;9:305-16. [DOI: 10.1016/j.jma.2020.03.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
30 Shuai C, Xue L, Gao C, Pan H, Deng Y. In situ decomposition of Ti 2 AlN promoted interfacial bonding in ZnAl-Ti 2 AlN biocomposites for bone repair. Mater Res Express 2020;7:025402. [DOI: 10.1088/2053-1591/ab6e32] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Cafarelli A, Marino A, Vannozzi L, Puigmartí-Luis J, Pané S, Ciofani G, Ricotti L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano 2021. [PMID: 34251189 DOI: 10.1021/acsnano.1c03087] [Reference Citation Analysis]
32 Feng P, Jia J, Peng S, Yang W, Bin S, Shuai C. Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual and Physical Prototyping 2020;15:211-26. [DOI: 10.1080/17452759.2020.1719457] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
33 Radwan-Pragłowska J, Janus Ł, Piątkowski M, Bogdał D, Matysek D. 3D Hierarchical, Nanostructured Chitosan/PLA/HA Scaffolds Doped with TiO2/Au/Pt NPs with Tunable Properties for Guided Bone Tissue Engineering. Polymers (Basel) 2020;12:E792. [PMID: 32252290 DOI: 10.3390/polym12040792] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Busuioc C, Olaret E, Stancu IC, Nicoara AI, Jinga SI. Electrospun Fibre Webs Templated Synthesis of Mineral Scaffolds Based on Calcium Phosphates and Barium Titanate. Nanomaterials (Basel) 2020;10:E772. [PMID: 32316366 DOI: 10.3390/nano10040772] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Shuai C, Liu G, Yang Y, Qi F, Peng S, Yang W, He C, Wang G, Qian G. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 2020;74:104825. [DOI: 10.1016/j.nanoen.2020.104825] [Cited by in Crossref: 78] [Cited by in F6Publishing: 32] [Article Influence: 39.0] [Reference Citation Analysis]
36 Chen J, Li S, Jiao Y, Li J, Li Y, Hao YL, Zuo Y. In Vitro Study on the Piezodynamic Therapy with a BaTiO3-Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS Appl Mater Interfaces 2021;13:49542-55. [PMID: 34610736 DOI: 10.1021/acsami.1c15611] [Reference Citation Analysis]
37 Shuai C, Li Y, Yang W, Yu L, Yang Y, Peng S, Feng P. Graphene Oxide Induces Ester Bonds Hydrolysis of Poly-l-lactic Acid Scaffold to Accelerate Degradation. Int J Bioprint 2020;6:249. [PMID: 32782986 DOI: 10.18063/ijb.v6i1.249] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]