BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chevigné A, Fievez V, Schmit J, Deroo S. Engineering and screening the N-terminus of chemokines for drug discovery. Biochemical Pharmacology 2011;82:1438-56. [DOI: 10.1016/j.bcp.2011.07.091] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
Number Citing Articles
1 Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology 2018;153:299-309. [DOI: 10.1016/j.bcp.2018.03.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
2 Tang Y, Li L. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins. Analytica Chimica Acta 2013;792:79-85. [DOI: 10.1016/j.aca.2013.05.065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
3 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
4 Mona CE, Besserer-offroy É, Cabana J, Lefrançois M, Boulais PE, Lefebvre M, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists. J Med Chem 2016;59:7512-24. [DOI: 10.1021/acs.jmedchem.6b00566] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chen L, Wang N, Sun D, Li L. Microwave-assisted acid hydrolysis of proteins combined with peptide fractionation and mass spectrometry analysis for characterizing protein terminal sequences. J Proteomics 2014;100:68-78. [PMID: 24145141 DOI: 10.1016/j.jprot.2013.10.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
6 Rosenberg EM Jr, Herrington J, Rajasekaran D, Murphy JW, Pantouris G, Lolis EJ. The N-terminal length and side-chain composition of CXCL13 affect crystallization, structure and functional activity. Acta Crystallogr D Struct Biol 2020;76:1033-49. [PMID: 33021505 DOI: 10.1107/S2059798320011687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020;13:eaay5024. [PMID: 32665413 DOI: 10.1126/scisignal.aay5024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012;13:4727-94. [PMID: 22606007 DOI: 10.3390/ijms13044727] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
9 Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, Handel TM. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem 2015;290:22385-97. [PMID: 26216880 DOI: 10.1074/jbc.M115.675108] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
10 Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018;293:19092-100. [PMID: 30305389 DOI: 10.1074/jbc.RA118.004370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Szpakowska M, Chevigné A. vCCL2/vMIP-II, the viral master KEYmokine. Journal of Leukocyte Biology 2016;99:893-900. [DOI: 10.1189/jlb.2mr0815-383r] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
12 Chevigné A, Fievez V, Szpakowska M, Fischer A, Counson M, Plesséria JM, Schmit JC, Deroo S. Neutralising properties of peptides derived from CXCR4 extracellular loops towards CXCL12 binding and HIV-1 infection. Biochim Biophys Acta 2014;1843:1031-41. [PMID: 24480462 DOI: 10.1016/j.bbamcr.2014.01.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
13 Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020;145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
14 Bonvin P, Dunn SM, Rousseau F, Dyer DP, Shaw J, Power CA, Handel TM, Proudfoot AEI. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display. J Biol Chem 2014;289:31846-55. [PMID: 25266725 DOI: 10.1074/jbc.M114.599233] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
15 Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
16 Kufareva I, Abagyan R, Handel TM. Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. In: Tschammer N, editor. Chemokines. Cham: Springer International Publishing; 2015. pp. 41-85. [DOI: 10.1007/7355_2014_77] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
17 Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018;104:343-57. [PMID: 29570832 DOI: 10.1002/JLB.3MA0118-007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
18 Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 2016;570:389-420. [PMID: 26921956 DOI: 10.1016/bs.mie.2015.12.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
19 Tian M, Zhang N, Liu X, Guo L, Yang L. Sequential on-line C-terminal sequencing of peptides based on carboxypeptidase Y digestion and optically gated capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2016;1459:152-9. [PMID: 27425760 DOI: 10.1016/j.chroma.2016.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
20 Jaerve A, Müller HW. Chemokines in CNS injury and repair. Cell Tissue Res. 2012;349:229-248. [PMID: 22700007 DOI: 10.1007/s00441-012-1427-3] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 9.6] [Reference Citation Analysis]