BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wan WL, Lin YJ, Shih PC, Bow YR, Cui Q, Chang Y, Chia WT, Sung HW. An In Situ Depot for Continuous Evolution of Gaseous H2 Mediated by a Magnesium Passivation/Activation Cycle for Treating Osteoarthritis. Angew Chem Int Ed Engl 2018;57:9875-9. [PMID: 29923670 DOI: 10.1002/anie.201806159] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Gong W, Xia C, He Q. Therapeutic gas delivery strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Reference Citation Analysis]
2 Ma Y, Wu F, Hu YH. Microfactories for Intracellular Locally Generated Hydrogen Therapy: Advanced Materials, Challenges, and Opportunities. ChemPlusChem 2020;85:57-67. [DOI: 10.1002/cplu.201900457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Xu Y, Fan M, Yang W, Xiao Y, Zeng L, Wu X, Xu Q, Su C, He Q. Homogeneous Carbon/Potassium-Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Near-Infrared Photocatalytic H2 Production. Adv Mater 2021;:e2101455. [PMID: 34369623 DOI: 10.1002/adma.202101455] [Reference Citation Analysis]
4 Yang G, Fan M, Zhu J, Ling C, Wu L, Zhang X, Zhang M, Li J, Yao Q, Gu Z, Cai X. A multifunctional anti-inflammatory drug that can specifically target activated macrophages, massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment of osteoarthritis. Biomaterials 2020;255:120155. [PMID: 32554130 DOI: 10.1016/j.biomaterials.2020.120155] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
5 Wang Y, Yang T, He Q. Strategies for engineering advanced nanomedicines for gas therapy of cancer. National Science Review 2020;7:1485-512. [DOI: 10.1093/nsr/nwaa034] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 22.0] [Reference Citation Analysis]
6 Sun Y, Wu H, Wang W, Zan R, Peng H, Zhang S, Zhang X. Translational status of biomedical Mg devices in China. Bioact Mater 2019;4:358-65. [PMID: 31909297 DOI: 10.1016/j.bioactmat.2019.11.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
7 Zhou G, Goshi E, He Q. Micro/Nanomaterials‐Augmented Hydrogen Therapy. Adv Healthcare Mater 2019;8:1900463. [DOI: 10.1002/adhm.201900463] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
8 Xu C, Wang S, Wang H, Liu K, Zhang S, Chen B, Liu H, Tong F, Peng F, Tu Y, Li Y. Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. Nano Lett 2021;21:1982-91. [DOI: 10.1021/acs.nanolett.0c04438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhao C, Chen J, Ye J, Li Z, Su L, Wang J, Zhang Y, Chen J, Yang H, Shi J, Song J. Structural Transformative Antioxidants for Dual-Responsive Anti-Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angew Chem Int Ed Engl 2021;60:14458-66. [PMID: 33835672 DOI: 10.1002/anie.202100873] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Zhou H, Tan J, Zhang X. Nanoreactors for Chemical Synthesis and Biomedical Applications. Chem Asian J 2019;14:3240-50. [DOI: 10.1002/asia.201900967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Chen H, Qin Z, Zhao J, He Y, Ren E, Zhu Y, Liu G, Mao C, Zheng L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019;225:119520. [PMID: 31586865 DOI: 10.1016/j.biomaterials.2019.119520] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
12 Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. Nanomicro Lett 2021;13:149. [PMID: 34160733 DOI: 10.1007/s40820-021-00670-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Cui X, Zhao Q, Huang Z, Xiao Y, Wan Y, Li S, Lee CS. Water-Splitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. Small 2020;16:e2004551. [PMID: 33125185 DOI: 10.1002/smll.202004551] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
14 Zhang H, Xiong H, Ahmed W, Yao Y, Wang S, Fan C, Gao C. Reactive oxygen species-responsive and scavenging polyurethane nanoparticles for treatment of osteoarthritis in vivo. Chemical Engineering Journal 2021;409:128147. [DOI: 10.1016/j.cej.2020.128147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Ye J, Li Z, Fu Q, Li Q, Zhang X, Su L, Yang H, Song J. Quantitative Photoacoustic Diagnosis and Precise Treatment of Inflammation In Vivo Using Activatable Theranostic Nanoprobe. Adv Funct Mater 2020;30:2001771. [DOI: 10.1002/adfm.202001771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]