BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan LJ, Sumien N, Thangthaeng N, Forster MJ. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Free Radic Res. 2013;47:123-133. [PMID: 23205777 DOI: 10.3109/10715762.2012.752078] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Yang X, Song J, Yan LJ. Chronic Inhibition of Mitochondrial Dihydrolipoamide Dehydrogenase (DLDH) as an Approach to Managing Diabetic Oxidative Stress. Antioxidants (Basel) 2019;8:E32. [PMID: 30717346 DOI: 10.3390/antiox8020032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
2 Auger C, Appanna ND, Alhasawi A, Appanna VD. Deciphering metabolic networks by blue native polyacrylamide gel electrophoresis: A functional proteomic exploration. EuPA Open Proteomics 2015;7:64-72. [DOI: 10.1016/j.euprot.2015.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
3 Wu Z, Shi J, Chen J, Hu D, Song B. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel 1,3,4-Thiadiazole Derivatives Containing an Amide Moiety. J Agric Food Chem 2021;69:8660-70. [PMID: 34319116 DOI: 10.1021/acs.jafc.1c01626] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014;2014:137919. [PMID: 25019091 DOI: 10.1155/2014/137919] [Cited by in Crossref: 156] [Cited by in F6Publishing: 165] [Article Influence: 19.5] [Reference Citation Analysis]
5 Zeng X, Chen X, Gao Y, Ren X, Wang L, Mao Z. Continuously high reactive oxygen species generation decreased the specific ϵ-poly- l -lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source. Process Biochemistry 2015;50:1993-2003. [DOI: 10.1016/j.procbio.2015.09.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
6 Huang J, Willems P, Van Breusegem F, Messens J. Pathways crossing mammalian and plant sulfenomic landscapes. Free Radic Biol Med 2018;122:193-201. [PMID: 29476921 DOI: 10.1016/j.freeradbiomed.2018.02.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
7 Halgand F, Houée-Lévin C, Weik M, Madern D. Remote oxidative modifications induced by oxygen free radicals modify T/R allosteric equilibrium of a hyperthermophilic lactate dehydrogenase. J Struct Biol 2020;210:107478. [PMID: 32087239 DOI: 10.1016/j.jsb.2020.107478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Jin Z, Wu J, Yan LJ. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target. Int J Mol Sci 2016;17:351. [PMID: 27005615 DOI: 10.3390/ijms17030351] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
9 Skåne A, Loose JSM, Vaaje-Kolstad G, Askarian F. Comparative proteomic profiling reveals specific adaption of Vibrio anguillarum to oxidative stress, iron deprivation and humoral components of innate immunity. J Proteomics 2022;251:104412. [PMID: 34737109 DOI: 10.1016/j.jprot.2021.104412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020;21:E4370. [PMID: 32575472 DOI: 10.3390/ijms21124370] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
11 Sharma S, Bhattarai S, Ara H, Sun G, St Clair DK, Bhuiyan MS, Kevil C, Watts MN, Dominic P, Shimizu T, McCarthy KJ, Sun H, Panchatcharam M, Miriyala S. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol 2020;37:101740. [PMID: 33049519 DOI: 10.1016/j.redox.2020.101740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Lichardusova L, Tatarkova Z, Calkovska A, Mokra D, Engler I, Racay P, Lehotsky J, Kaplan P. Proteomic analysis of mitochondrial proteins in the guinea pig heart following long-term normobaric hyperoxia. Mol Cell Biochem 2017;434:61-73. [PMID: 28432557 DOI: 10.1007/s11010-017-3037-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
13 Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015;89:1209-26. [PMID: 26047665 DOI: 10.1007/s00204-015-1520-y] [Cited by in Crossref: 155] [Cited by in F6Publishing: 143] [Article Influence: 22.1] [Reference Citation Analysis]
14 Wu J, Li R, Li W, Ren M, Thangthaeng N, Sumien N, Liu R, Yang S, Simpkins JW, Forster MJ, Yan LJ. Administration of 5-methoxyindole-2-carboxylic acid that potentially targets mitochondrial dihydrolipoamide dehydrogenase confers cerebral preconditioning against ischemic stroke injury. Free Radic Biol Med 2017;113:244-54. [PMID: 29017857 DOI: 10.1016/j.freeradbiomed.2017.10.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
15 Yan LJ. NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021;11:730. [PMID: 34068842 DOI: 10.3390/biom11050730] [Reference Citation Analysis]
16 Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020;12:254. [PMID: 33088270 DOI: 10.3389/fnagi.2020.00254] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Quijano C, Trujillo M, Castro L, Trostchansky A. Interplay between oxidant species and energy metabolism. Redox Biol 2016;8:28-42. [PMID: 26741399 DOI: 10.1016/j.redox.2015.11.010] [Cited by in Crossref: 118] [Cited by in F6Publishing: 109] [Article Influence: 16.9] [Reference Citation Analysis]
18 Ambrus A, Adam-Vizi V. Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase. Arch Biochem Biophys. 2013;538:145-155. [PMID: 24012808 DOI: 10.1016/j.abb.2013.08.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
19 Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. Mol BioSyst 2015;11:678-97. [DOI: 10.1039/c4mb00571f] [Cited by in Crossref: 56] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
20 Szabò I, Leanza L. The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2017;240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
21 Gergondey R, Garcia C, Marchand CH, Lemaire SD, Camadro JM, Auchère F. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Saccharomyces cerevisiae under basal and stress conditions. Biochem J 2017;474:1175-93. [PMID: 28167699 DOI: 10.1042/BCJ20160927] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
22 Yumnam S, Kang MC, Oh SH, Kwon HC, Kim JC, Jung ES, Lee CH, Lee AY, Hwang JI, Kim SY. Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radic Biol Med 2021;162:77-87. [PMID: 33279616 DOI: 10.1016/j.freeradbiomed.2020.11.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yan LJ. Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Oxid Med Cell Longev 2014;2014:343154. [PMID: 24883175 DOI: 10.1155/2014/343154] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
24 Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca2+World J Biol Chem 2015; 6(4): 310-323 [PMID: 26629314 DOI: 10.4331/wjbc.v6.i4.310] [Cited by in CrossRef: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
25 Hwang I, Tang D, Paik J. Oxidative stress sensing and response in neural stem cell fate. Free Radic Biol Med 2021;169:74-83. [PMID: 33862161 DOI: 10.1016/j.freeradbiomed.2021.03.043] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Moon E, Park HM, Lee CH, Do S, Park J, Han N, Do MH, Lee JH, Lee H, Kim SY. Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis. Journal of Proteomics 2015;117:70-85. [DOI: 10.1016/j.jprot.2014.12.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
27 Dimer NW, Ferreira BK, Agostini JF, Gomes ML, Kist LW, Malgarin F, Carvalho-Silva M, Gomes LM, Rebelo J, Frederico MJS, Silva FRMB, Rico EP, Bogo MR, Streck EL, Ferreira GC, Schuck PF. Brain bioenergetics in rats with acute hyperphenylalaninemia. Neurochem Int 2018;117:188-203. [PMID: 29454001 DOI: 10.1016/j.neuint.2018.01.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
28 Castonguay Z, Auger C, Thomas SC, Chahma M, Appanna VD. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem Biophys Res Commun 2014;454:172-7. [PMID: 25450376 DOI: 10.1016/j.bbrc.2014.10.071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
29 Mishra S, Kumar R, Malhotra N, Singh N, Dada R. Mild oxidative stress is beneficial for sperm telomere length maintenance. World J Methodol 2016; 6(2): 163-170 [PMID: 27376021 DOI: 10.5662/wjm.v6.i2.163] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
30 Zhao Y, Miriyala S, Miao L, Mitov M, Schnell D, Dhar SK, Cai J, Klein JB, Sultana R, Butterfield DA, Vore M, Batinic-Haberle I, Bondada S, St Clair DK. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radic Biol Med 2014;72:55-65. [PMID: 24632380 DOI: 10.1016/j.freeradbiomed.2014.03.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 9.3] [Reference Citation Analysis]
31 Mailloux RJ, Jin X, Willmore WG. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2014;2:123-139. [PMID: 24455476 DOI: 10.1016/j.redox.2013.12.011] [Cited by in Crossref: 177] [Cited by in F6Publishing: 162] [Article Influence: 19.7] [Reference Citation Analysis]
32 Li R, Luo X, Wu J, Thangthaeng N, Jung ME, Jing S, Li L, Ellis DZ, Liu L, Ding Z, Forster MJ, Yan LJ. Mitochondrial Dihydrolipoamide Dehydrogenase is Upregulated in Response to Intermittent Hypoxic Preconditioning. Int J Med Sci 2015;12:432-40. [PMID: 26078703 DOI: 10.7150/ijms.11402] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
33 Yan LJ. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014;2C:165-169. [PMID: 25460727 DOI: 10.1016/j.redox.2014.01.002] [Cited by in Crossref: 105] [Cited by in F6Publishing: 95] [Article Influence: 13.1] [Reference Citation Analysis]
34 Devarie-Baez NO, Silva Lopez EI, Furdui CM. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic Res 2016;50:172-94. [PMID: 26340608 DOI: 10.3109/10715762.2015.1090571] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
35 Hamitouche F, Armengaud J, Dedieu L, Duport C. Cysteine Proteome Reveals Response to Endogenous Oxidative Stress in Bacillus cereus. Int J Mol Sci 2021;22:7550. [PMID: 34299167 DOI: 10.3390/ijms22147550] [Reference Citation Analysis]