1
|
Badillo-Godinez O, Niemi J, Helfridsson L, Karimi S, Ramachandran M, Mangukiya HB, Nelander S, Hellström M. Brain tumors induce immunoregulatory dendritic cells in draining lymph nodes that can be targeted by OX40 agonist treatment. J Immunother Cancer 2025; 13:e011548. [PMID: 40389372 PMCID: PMC12090865 DOI: 10.1136/jitc-2025-011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Primary and metastatic brain tumors have a poor prognosis, partly owing to the unique characteristics of the central nervous system (CNS) and tumor immune microenvironment (TIME). One distinct feature of the CNS TIME is the limited infiltration and activation of dendritic cells (DCs). The impact of CNS versus non-CNS TIME can be assessed by injecting tumor cells from the same model, either subcutaneously (peripherally) or into the brain. Subcutaneous tumors drain into the tumor-draining lymph nodes in the skin (TdLN-p), whereas brain tumors drain into the deep cervical TdLN (TdLN-c). We previously showed that CNS tumors that are not responsive to immune checkpoint inhibition become responsive when grown peripherally, and that non-responsiveness correlates with a tolerogenic immune response in the local TIME and TdLN-c. METHODS In this study, we investigated the immunoregulatory potential of cervical DCs (DC-c) compared with that of peripheral DCs (DC-p) using high-resolution flow cytometry, single-cell RNA sequencing, and ex vivo and in vivo functional characterization of TdLNs from mouse models of glioma and lymphoma. RESULTS Our analysis revealed that DC-c promoted regulatory T-cell expansion and poorly cytotoxic CD8+ T cells compared with DC-p. Furthermore, we identified OX40 (Tnfrsf4) as a modulator of immunoregulatory DC-c function and found that its antitumor effect depended on lymphocyte trafficking and the DC transcription factor Batf3. CCR7+OX40+ DCs were efficient in antigen processing and presentation, and OX40 agonists further enhanced DC activation. In TIME, the CCR7+OX40+ DCs expressed OX40L, and blocking it promoted Treg formation ex vivo. CONCLUSIONS Our findings highlight the unique immunoregulatory functions of DC-c in TdLNs and suggest the importance of OX40 signaling through direct effects on CCR7+OX40+ DCs and indirect effects on T cells.
Collapse
Affiliation(s)
- Oscar Badillo-Godinez
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jenni Niemi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liam Helfridsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Shokoufeh Karimi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Muragaki Y, Ishikawa E, Tamura M, Kawamata T, Gosho M, Hashimoto K, Komori T, Yokoo H, Matsutani M, Maebayashi K, Tanaka T, Yamaguchi S, Kanamori M, Yamamoto T, Hanihara M, Arakawa Y, Sasayama T, Abe T, Nakamura H, Mukasa A, Uzuka T, Nakajo K, Ohno T. A randomized, placebo-controlled phase III trial of an autologous, formalin-fixed tumor vaccine for newly diagnosed glioblastoma: trial protocol. Jpn J Clin Oncol 2025:hyaf078. [PMID: 40377260 DOI: 10.1093/jjco/hyaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
This multi-institutional, double-blind, randomized, placebo-controlled phase III trial was designed to evaluate the efficacy and safety of Cellm-001, an autologous formalin-fixed brain tumor immunostimulant, for newly diagnosed glioblastoma with gross total resection to prolong overall survival (OS) and prevent recurrence after surgery. One hundred twelve patients are to be randomized 1:1 to either Cellm-001 with standard chemoradiotherapy (CRT) or saline solution with standard CRT. Randomization is based on the following stratified randomization criteria: age, Karnofsky Performance Status, and the presence or absence of photodynamic therapy (PDT). The primary endpoint is OS and secondary outcomes are progression-free survival (PFS), OS and PFS with and without radiographically residual lesions as subgroups, OS and PFS with and without PDT, p53-negative OS and PFS, high Cluster of Differentiation-8 score OS and PFS, OS associated with death in primary disease, and 24-month OS and PFS rates. All institutions received ethical committee approval and patient enrollment began in 2021. IMPORTANCE OF THE STUDY Given the growing interest in immunotherapy (IMT), we developed an autologous formalin-fixed tumor vaccine (AFTV) manufactured from the patient's own glioblastoma multiforme (GBM) tissue in paraffin-embedded blocks made from the resected tumor and a double-blind, randomized phase IIB trial of AFTV with temozolomide in newly diagnosed GBM was conducted. The 3-year progression-free survival (PFS) rate for patients with gross total resection (GTR) on imaging tended toward improvement: 81% in the AFTV group versus 46% in the placebo group (P = .067). Based on these IIB results, the feasibility of conducting a phase III trial was confirmed for IIB-eligible patients with total resection. We here plan to conduct the world's first double-blind, randomized, placebo-controlled phase III trial using Cellm-001 to demonstrate autologous tumor immunostimulant efficacy. This IMT, in combination with sub-analyses (GTR, P53 status, CD8 score, and other factors) to be validated, is expected to be a breakthrough in effective standards of care for the treatment of GBM. TRIAL REGISTRATION Registry number: jRCT2031200153; Date of Registration: 20 /October, /2020; Date of First Patient Enrollment: 14 /January/, 2021.
Collapse
Affiliation(s)
- Yoshihiro Muragaki
- Department of Medical Device Engineering, Kobe University, Kusunoki-cho, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tennodai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Koichi Hashimoto
- Tsukuba Clinical Research and Development Organization, University of Tsukuba, Tennodai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Takashi Komori
- Tokyo Metropolitan Neurological Hospital, Musashidai, Fuchu City, Tokyo 183-0042, Japan
| | - Hideaki Yokoo
- Department of Pathology, Gunma University, Showa-cho, Maebashi City, Gunma 371-8511, Japan
| | - Masao Matsutani
- Harajuku Rehabilitation Hospital, Jingumae, Shibuya-ku, Tokyo 150-0001, Japan
| | - Katsuya Maebayashi
- Division of Radiation Oncology, Nippon Medical School Hospital, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo City, Hokkaido 060-8638, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University, Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Kanazawa-ku, Yokohama City, Kanagawa 236-0004, Japan
| | - Mitsuto Hanihara
- Department of Neurosurgery, University of Yamanashi, Shimokawahigashi, Chuo City, Yamanashi 409-3898, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University, Kusunoki-cho, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Saga University, 1-1-1, Nabeshima, Saga City, Saga 849-8501, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University, 67, Asahi-machi, Kurume-shi, Fukuoka 830-0011, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, 2-2-1, Kumamoto University, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 881, Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Kosuke Nakajo
- Department of Neurosurgery, Osaka Metropolitan University, 1-4-3, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Tadao Ohno
- Cell-Medicine Inc., Sengen, Tsukuba City, Ibaraki 305-0047, Japan
| |
Collapse
|
3
|
Ameri A, Gandomkar H, Ahmed HH, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ghasemzadeh I. A review of the progress and challenges of developing dendritic-based vaccines against hepatitis B virus (HBV). Pathol Res Pract 2025; 271:156025. [PMID: 40382895 DOI: 10.1016/j.prp.2025.156025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Hepatitis B virus (HBV) infections that last a long time are a significant public health problem worldwide. About 254 million people around the world are chronically sick with HBV. Each year, 1.2 million new cases occur, and in 2022, 1.1 million people will die from the disease. So, it has been essential to work on finding ways to treat and avoid HBV. The process of therapeutic vaccination involves giving people a non-infectious form of a virus to start or improve immune reactions specific to HBV. This helps keep HBV infections under control. Dendritic cells (DCs) play a significant part in beginning the adaptive immune response, which could decide how well an HBV infection is treated. DC-based treatment has been looked into for people with chronic HBV (CHB) infection and has shown some sound effects. Vaccines for CHB that use DCs boost antiviral immunity by improving T cells and breaking the immune system's resistance against HBV. In these vaccines, DCs are loaded with HBV antigens (like HBsAg, HBcAg, or peptides) outside of the body and then put back into the patient to make the immune system work better. In conclusion, this DC treatment is a biological therapy method with a good chance of being used. This study examined the different DC-based medicines that can treat and prevent HBV. Finally, we've talked about clinical studies, the current problems, how to fix them, and the future of this vaccine for treating and preventing HBV.
Collapse
Affiliation(s)
- Ali Ameri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | - Iman Ghasemzadeh
- Research Center Of Tropical and Infectious Diseases, Kerman University Of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H. Meningeal lymphatic drainage: novel insights into central nervous system disease. Signal Transduct Target Ther 2025; 10:142. [PMID: 40320416 PMCID: PMC12050339 DOI: 10.1038/s41392-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 961st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingpei Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenyang Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
6
|
Zhao S, Qu Y, Sun Z, Zhang S, Xia M, Shi Y, Wang J, Wang Y, Zhong Z, Meng F. Glioblastoma Cell Lysate and Adjuvant Nanovaccines via Strategic Vaccination Completely Regress Established Murine Tumors. Adv Healthc Mater 2025; 14:e2500911. [PMID: 40270217 DOI: 10.1002/adhm.202500911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor vaccines have shown great promise for treating various malignancies; however, glioblastoma (GBM), characterized by its immunosuppressive tumor microenvironment, high heterogeneity, and limited accessibility, has achieved only modest clinical benefits. Here, it is reported that GBM cell lysate nanovaccines boosted with TLR9 agonist CpG ODN (GlioVac) via a strategic vaccination regimen achieve complete regression of malignant murine GBM tumors. Subcutaneous administration of GlioVac promotes uptake by cervical lymph nodes and antigen presentation cells, bolstering antigen cross-presentation and infiltration of GBM-specific CD8+ T cells into the tumor. Notably, a regimen involving two subcutaneous and three intravenous vaccinations not only activates systemic anti-GBM immunity but also further enhances the tumor infiltration of cytotoxic T lymphocytes, effectively reshaping the "cold" GBM tumor into a "hot" tumor. This approach led to a state of tumor-free survival in 5 out of 7 mice bearing the established GL261 GBM model with complete protection from tumor rechallenge. In an orthotopic hRas-GBM model induced by a lentiviral plasmid, GlioVac resulted in ≈100% complete tumor regression. These findings suggest that GlioVac provides a personalized therapeutic vaccine strategy for glioblastoma.
Collapse
Affiliation(s)
- Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yanyi Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiwei Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Shuo Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Mingyu Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Shi
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Admasu TD, Yu JS. Harnessing Immune Rejuvenation: Advances in Overcoming T Cell Senescence and Exhaustion in Cancer Immunotherapy. Aging Cell 2025; 24:e70055. [PMID: 40178455 PMCID: PMC12073907 DOI: 10.1111/acel.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with T cell-based strategies at the forefront of this revolution. However, the durability of these responses is frequently undermined by two intertwined phenomena: T cell exhaustion and senescence. While exhaustion is driven by chronic antigen exposure in the immunosuppressive tumor microenvironment, leading to a reversible state of diminished functionality, senescence reflects a more permanent, age- or stress-induced arrest in cellular proliferation and effector capacity. Together, these processes represent formidable barriers to sustained anti-tumor immunity. In this review, we dissect the molecular underpinnings of T cell exhaustion and senescence, revealing how these dysfunctions synergistically contribute to immune evasion and resistance across a range of solid tumors. We explore cutting-edge therapeutic approaches aimed at rewiring the exhausted and senescent T cell phenotypes. These include advances in immune checkpoint blockade, the engineering of "armored" CAR-T cells, senolytic therapies that selectively eliminate senescent cells, and novel interventions that reinvigorate the immune system's capacity for tumor eradication. By spotlighting emerging strategies that target both exhaustion and senescence, we provide a forward-looking perspective on the potential to harness immune rejuvenation. This comprehensive review outlines the next frontier in cancer immunotherapy: unlocking durable responses by overcoming the immune system's intrinsic aging and exhaustion, ultimately paving the way for transformative therapeutic breakthroughs.
Collapse
Affiliation(s)
| | - John S. Yu
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Kairos PharmaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Azmal M, Miah MM, Prima FS, Paul JK, Haque ASNB, Ghosh A. Advances and challenges in cancer immunotherapy: Strategies for personalized treatment. Semin Oncol 2025; 52:152345. [PMID: 40305928 DOI: 10.1016/j.seminoncol.2025.152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Cancer immunotherapy has transformed oncology by harnessing the immune system to specifically target cancer cells, offering reduced systemic toxicity compared to traditional therapies. This review highlights key strategies, including adoptive cell transfer (ACT), immune checkpoint inhibitors, oncolytic viral (OV) therapy, monoclonal antibodies (mAbs), and mRNA-based vaccines. ACT reinfuses enhanced immune cells like tumor-infiltrating lymphocytes (TILs) to combat refractory cancers, while checkpoint inhibitors (eg, PD-1 and CTLA-4 blockers) restore T-cell activity. OV therapy uses engineered viruses (eg, T-VEC) to selectively lyse cancer cells, and advanced mAbs improve targeting precision. mRNA vaccines introduce tumor-specific antigens to trigger robust immune responses. Despite significant progress, challenges like immune-related side effects, high costs, and immunosuppressive tumor microenvironments persist. This review underscores the need for combination strategies and precision medicine to overcome these barriers and maximize the potential of immunotherapy in personalized cancer treatment.
Collapse
Affiliation(s)
- Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Munna Miah
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fatema Sultana Prima
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Anm Shah Newaz Been Haque
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| |
Collapse
|
10
|
Xie C, Wei F, Liu T, Li X, Chen K, Wen W, Sun W. Macrophage-derived dendritic cells enhance antitumor immunity in a mouse model of head and neck squamous cell carcinoma. Clin Transl Oncol 2025:10.1007/s12094-025-03889-y. [PMID: 40285810 DOI: 10.1007/s12094-025-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE This study investigates the therapeutic potential of bone marrow macrophages-derived dendritic cells (BMΦDCs) in enhancing antitumor immunity against head and neck squamous cell carcinoma (HNSCC), focusing on their effects in inhibiting tumor growth, reducing metastasis, and modulating the tumor microenvironment. METHODS BMΦDCs were generated by culturing bone marrow cells with macrophage colony-stimulating factor (M-CSF) followed by granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). MTCQ-1 tumor lysates were used for antigen loading. The phenotypic characteristics of BMΦDCs were analyzed using flow cytometry. In vivo antitumor efficacy was assessed in subcutaneous and lung metastasis models in immunocompetent C57BL/6 mice. Tumor growth was monitored, and tumor tissues were collected for histological analysis using hematoxylin and eosin (H&E), Masson's trichrome, and anti-CD8 staining. RESULTS BMΦDCs displayed higher maturation marker expression (CD40, CD86) compared to traditional BMDCs. In the subcutaneous tumor model, BMΦDCs significantly inhibited tumor growth and enhanced cytotoxic T lymphocyte (CTL) activity. In the lung metastasis model, BMΦDCs effectively reduced metastatic burden. Histological analysis revealed increased CD8+ T cell infiltration and reduced tumor fibrosis in BMΦDC-treated mice. No significant toxicity or organ damage was observed. CONCLUSIONS BMΦDCs are a promising immunotherapeutic approach for HNSCC, demonstrating superior antitumor efficacy, enhanced immune responses, and excellent biosafety. These findings highlight the potential of BMΦDCs in advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Chubo Xie
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Fanqin Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianrun Liu
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiaochen Li
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Kaiting Chen
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Wei Sun
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
11
|
Khan SM, Wang AZ, Desai RR, McCornack CR, Sun R, Dahiya SM, Foltz JA, Sherpa ND, Leavitt L, West T, Wang AF, Krbanjevic A, Choi BD, Leuthardt EC, Patel B, Charest A, Kim AH, Dunn GP, Petti AA. Mapping the spatial architecture of glioblastoma from core to edge delineates niche-specific tumor cell states and intercellular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647096. [PMID: 40235981 PMCID: PMC11996482 DOI: 10.1101/2025.04.04.647096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Treatment resistance in glioblastoma (GBM) is largely driven by the extensive multi-level heterogeneity that typifies this disease. Despite significant progress toward elucidating GBM's genomic and transcriptional heterogeneity, a critical knowledge gap remains in defining this heterogeneity at the spatial level. To address this, we employed spatial transcriptomics to map the architecture of the GBM ecosystem. This revealed tumor cell states that are jointly defined by gene expression and spatial localization, and multicellular niches whose composition varies along the tumor core-edge axis. Ligand-receptor interaction analysis uncovered a complex network of intercellular communication, including niche- and region-specific interactions. Finally, we found that CD8 positive GZMK positive T cells colocalize with LYVE1 positive CD163 positive myeloid cells in vascular regions, suggesting a potential mechanism for immune evasion. These findings provide novel insights into the GBM tumor microenvironment, highlighting previously unrecognized patterns of spatial organization and intercellular interactions, and novel therapeutic avenues to disrupt tumor-promoting interactions and overcome immune resistance.
Collapse
|
12
|
Wang Y, Siebzehnrubl D, Weller M, Weiss T, Siebzehnrubl FA, Newland B. Vortioxetine: A Potential Drug for Repurposing for Glioblastoma Treatment via a Microsphere Local Delivery System. ACS Biomater Sci Eng 2025; 11:2203-2215. [PMID: 40167528 PMCID: PMC12001186 DOI: 10.1021/acsbiomaterials.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Drug repurposing is an attractive route for finding new therapeutics for brain cancers such as glioblastoma. Local administration of drugs to brain tumors or the postsurgical resection cavity holds promise to deliver a high dose to the target site with minimal off-target effects. Drug delivery systems aim to sustain the release of the drug at the target site but typically exhibit drawbacks such as a poor safety profile, uncontrolled/rapid drug release, or poor control over synthesis parameters/material dimensions. Herein, we analyzed the antidepressant vortioxetine and showed in vitro that it causes a greater loss of viability in glioblastoma cells than it does to normal primary human astrocytes. We developed a new droplet microfluidic-based emulsion method to reproducibly produce vortioxetine-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres with tight size control (36.80 ± 1.96 μm). The drug loading efficiency was around 90% when 9.1% (w/w) drug was loaded into the microspheres, and drug release could be sustained for three to 4 weeks. The vortioxetine microspheres showed robust antiglioblastoma efficacy in both 2D monolayer and 3D spheroid patient-derived glioblastoma cells, highlighting the potential of combining an antidepressant with sustained local delivery as a new therapeutic strategy.
Collapse
Affiliation(s)
- Yu Wang
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Dorit Siebzehnrubl
- Cardiff
University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Michael Weller
- Department
of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department
of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Florian A. Siebzehnrubl
- Cardiff
University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Ben Newland
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
13
|
Narang K, Kataria T, Bisht SS, Gupta D, Banerjee S, Mayank M, Shishak S, Kaliyaperumal V, Tamilselvan S, Kamaraj D, Abraham S. Contemporary Long-term Survival Outcomes and Prognostic Factors in Adult grade 4 Astrocytoma: An Institutional Analysis. Clin Oncol (R Coll Radiol) 2025; 40:103788. [PMID: 40048926 DOI: 10.1016/j.clon.2025.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025]
Abstract
AIMS Astrocytoma grade 4 without isocitrate dehydrogenase (IDH)-based characterisation has been called glioblastoma (GBM) in historical cohorts. There have been significant advancements in diagnostic radiology and pathology, and in the technical aspects of surgery, radiation therapy, and temozolomide (TMZ) used for treatment of this disease. We analysed the outcomes of 267 adult astrocytoma grade 4/GBM patients, consecutively treated between December 2010 and November 2018 using modern techniques at our institute. MATERIALS AND METHODS All patients underwent surgical resection, histopathology review, and O6-methylguanine-DNA methyltransferase (MGMT) methylation testing, volumetric modulated arc therapy (VMAT)-based radiation therapy using institute-specific target-delineation guidelines and image guidance, and TMZ according to Stupp protocol. Serial multiparametric magnetic resonance imaging-based follow-up ensured early detection of disease progression. Appropriate salvage therapy was determined based on clinicopathological attributes. Kaplan-Meier survival plots, log-rank test, and Cox regression analysis were performed on the prospectively recorded dataset to estimate survival and the factors affecting it. RESULTS At a median follow-up of 72 months, the median progression-free survival (PFS), 1-year PFS, and 2-year PFS were 10 months, 37.8%, and 17.5%, respectively. MGMT-methylation, a radiation dose ≥54 Gy, and ≥4 adjuvant TMZ cycles were associated with favourable PFS. Median overall survival (OS), 2-year OS and 5-year OS were 24 months, 48%, and 18%, respectively. MGMT-methylation and 1-year disease control were associated with favourable OS. Salvage treatment could be offered to 69.2% patients, with use of all the three treatment modalities in 12.4%. Salvage reirradiation could be used in 30.8% patients. Haematological toxicity ≥grade 2 was evident in 6% patients during concurrent radiation-TMZ phase and in 9% patients in adjuvant TMZ phase. Postradiation neurocognitive deficits were noted in 20.1% patients, with onset at a median duration of 10 months. CONCLUSION Modern diagnostic and therapeutic techniques affected a near-doubling of survival and acceptable late toxicity, as compared to historical data.
Collapse
Affiliation(s)
- K Narang
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India.
| | - T Kataria
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - S S Bisht
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - D Gupta
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - S Banerjee
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - M Mayank
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - S Shishak
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - V Kaliyaperumal
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - S Tamilselvan
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - D Kamaraj
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| | - S Abraham
- Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurugram, India
| |
Collapse
|
14
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
16
|
Roncali L, Hindré F, Samarut E, Lacoeuille F, Rousseau A, Lemée JM, Garcion E, Chérel M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025; 15:4861-4889. [PMID: 40303349 PMCID: PMC12036880 DOI: 10.7150/thno.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive malignancy of the central nervous system. Despite two decades of intensive research since the establishment of the standard of care, emerging strategies have yet to produce consistent satisfactory outcomes. Because of its specific localisation and intricate characteristics, GB is a uniquely regulated solid tumour with a strong resistance to therapy. Advances in targeted radionuclide therapy (TRT), particularly with the introduction of a-emitting radionuclides, have unveiled potential avenues for the management of GB. Recent preclinical and clinical studies underscored promising advancements for targeted-α-therapy (TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing diverse radionuclides, vectors, target molecules, and administration modalities. This review seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. Here, the focus is made on the advancements and limitations of in vivo explorations, pilot studies, and clinical trials, to determine the best directions for future investigations. In doing so, we hope to identify existing challenges and draw insights that might pave the way towards a more effective therapeutic approach.
Collapse
Affiliation(s)
- Loris Roncali
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela; E-15782 Santiago de Compostela, Spain
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
| | - François Hindré
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PRIMEX (Experimental Imagery and Radiobiology Platform), University of Angers, SFR 4208; F-49000 Angers, France
| | - Edouard Samarut
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Department of Neurosurgery & Neurotraumatology, University Hospital of Nantes; F-44093 Nantes, France
| | - Franck Lacoeuille
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Nuclear Medicine, University Hospital of Angers; F-49000 Angers, France
| | - Audrey Rousseau
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Pathology, University Hospital of Angers; F-49000 Angers, France
| | - Jean-Michel Lemée
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Neurosurgery, University Hospital of Angers; F-49000 Angers, France
| | - Emmanuel Garcion
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PACEM (Platform of Cellular and Molecular Analysis), University of Angers, SFR 4208; F-49000 Angers, France
| | - Michel Chérel
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Institut de Cancérologie de l'Ouest, Department of Nuclear Medicine; F-44160 Saint-Herblain, France
| |
Collapse
|
17
|
Tang J, Karbhari N, Campian JL. Therapeutic Targets in Glioblastoma: Molecular Pathways, Emerging Strategies, and Future Directions. Cells 2025; 14:494. [PMID: 40214448 PMCID: PMC11988183 DOI: 10.3390/cells14070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth, invasive infiltration into surrounding brain tissue, and resistance to conventional therapies. Despite advancements in surgery, radiotherapy, and chemotherapy, median survival remains approximately 15 months, underscoring the urgent need for innovative treatments. Key considerations informing treatment development include oncogenic genetic and epigenetic alterations that may dually serve as therapeutic targets and facilitate treatment resistance. Various immunotherapeutic strategies have been explored and continue to be refined for their anti-tumor potential. Technical aspects of drug delivery and blood-brain barrier (BBB) penetration have been addressed through novel vehicles and techniques including the incorporation of nanotechnology. Molecular profiling has emerged as an important tool to individualize treatment where applicable, and to identify patient populations with the most drug sensitivity. The goal of this review is to describe the spectrum of potential GBM therapeutic targets, and to provide an overview of key trial outcomes. Altogether, the progress of clinical and preclinical work must be critically evaluated in order to develop therapies for GBM with the strongest therapeutic efficacy.
Collapse
Affiliation(s)
- Justin Tang
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Nishika Karbhari
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Jian L. Campian
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| |
Collapse
|
18
|
Wischnewski V, Guerrero Aruffo P, Massara M, Maas RR, Soukup K, Joyce JA. The local microenvironment suppresses the synergy between irradiation and anti-PD1 therapy in breast-to-brain metastasis. Cell Rep 2025; 44:115427. [PMID: 40106433 DOI: 10.1016/j.celrep.2025.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The brain environment is uniquely specialized to protect its neuronal tissue from excessive inflammation by tightly regulating adaptive immunity. However, in the context of brain cancer progression, this regulation can lead to a conflict between T cell activation and suppression. Here, we show that, while CD8+ T cells can infiltrate breast cancer-brain metastases, their anti-tumor cytotoxicity is locally suppressed in the brain. Conversely, CD8+ T cells exhibited tumoricidal activity in extracranial mammary lesions originating from the same cancer cells. Consequently, combined high-dose irradiation and anti-programmed cell death protein 1 (PD1) therapy was effective in extracranial tumors but not intracranial lesions. Transcriptional analyses and functional studies identified neutrophils and Trem2-expressing macrophages as key sources for local T cell suppression within the brain, providing rational targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Vladimir Wischnewski
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| |
Collapse
|
19
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
Holman R, McDannold N. Identifying new therapeutics for focused ultrasound-enhanced drug delivery in the management of glioblastoma. Front Oncol 2025; 15:1507940. [PMID: 40182047 PMCID: PMC11965939 DOI: 10.3389/fonc.2025.1507940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma, a grade IV astrocytoma, typically has a poor prognosis, with most patients succumbing within eighteen months of diagnosis and few experiencing long-term survival. Focused ultrasound, an emerging localized therapy, has shown promising results in early-phase studies for glioblastoma by improving the uptake of temozolomide and carboplatin. The blood-brain barrier is critical to homeostasis by regulating the movement of substances between the bloodstream and the central nervous system. While this barrier helps prevent infections from bloodborne pathogens, it also hinders the delivery of cancer therapies to gliomas. Combining focused ultrasound with circulating microbubbles enhances local blood-brain barrier permeability, facilitating the intratumoral uptake of systemic cancer therapies. The purpose of this study was to identify promising new therapeutics in the treatment of glioblastoma for localized drug delivery via focused ultrasound. This review provides an overview of the current standard of care for newly diagnosed and recurrent glioblastoma, identifies current therapies indicated for the treatment, discusses key aspects of microbubble resonators, describes focused ultrasound devices under evaluation in human trials, and concludes with a perspective of emerging therapeutics for future studies.
Collapse
Affiliation(s)
- Ryan Holman
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | | |
Collapse
|
21
|
Alkayyal AA, Mahmoud AB. A 5-Year Update on the Clinical Development of Cancer Cell-Based Vaccines for Glioblastoma Multiforme. Pharmaceuticals (Basel) 2025; 18:376. [PMID: 40143152 PMCID: PMC11946125 DOI: 10.3390/ph18030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is considered one of the most aggressive forms of brain cancer with a 15-month median survival, despite advancements in surgery, radiotherapy, and chemotherapy. The immune-suppressed tumor microenvironment and the blood-brain barrier are major contributors to its poor prognosis and treatment resistance. In the last decade, significant progress has been made in developing cell-based vaccines to boost immune responses against GBM. This review provides an extensive update on recent clinical trials involving various cancer cell vaccines, including ICT-107, the α-type-1 DC vaccine, and others. Although these trials have demonstrated potential improvements in progression-free survival (PFS) and overall survival (OS), the diverse and immune-suppressed nature of GBM poses challenges for consistent therapeutic success. We discuss the details of these trials along with the potential mechanism of vaccine efficacy and immune activations. The findings of these trials highlight the significance of a personalized immunotherapy approach and suggest that patient stratification could significantly advance the clinical management of GBM.
Collapse
Affiliation(s)
- Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Madinah 41477, Saudi Arabia
- Health and Life Research Center, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
22
|
Garfinkle EAR, Mardis ER. Cancer Immunogenomics Approaches and Applications to Cancer Vaccines. Cancer J 2025; 31:e0762. [PMID: 40126884 DOI: 10.1097/ppo.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/17/2025] [Indexed: 03/26/2025]
Abstract
The application of next-generation sequencing-based genomics and corresponding analytical pipelines have significantly improved our ability to identify tumor-unique antigenic peptides ("neoantigens") for the design of personalized vaccine therapies and to monitor immune responses to these vaccines. The more recent implementation of artificial intelligence and machine learning into several of the more complex analytical components of the neoantigen selection process has provided significant improvements across a number of previously difficult aspects within neoantigen identification, as we will describe. Related technologies and analytics have been developed that enable the characterization of changes to the tumor immune microenvironment facilitated by vaccination and monitor systemic responses in patients. Here, we review these new methods and their application to the design, implementation, and evaluation of cancer vaccines.
Collapse
Affiliation(s)
- Elizabeth A R Garfinkle
- the Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital
| | - Elaine R Mardis
- the Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
23
|
Kiełbowski K, Plewa P, Zadworny J, Bakinowska E, Becht R, Pawlik A. Recent Advances in the Development and Efficacy of Anti-Cancer Vaccines-A Narrative Review. Vaccines (Basel) 2025; 13:237. [PMID: 40266115 PMCID: PMC11946321 DOI: 10.3390/vaccines13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025] Open
Abstract
Immunotherapy is an established and efficient treatment strategy for a variety of malignancies. It aims to boost the anticancer properties of one's own immune system. Several immunotherapeutic options are available, but immune checkpoint blockers represent the most widely known and investigated. Anticancer vaccines represent an evolving area of immunotherapy that stimulate antigen-presenting cells, cytotoxic responses of CD8+ T cells, and the presence of memory T cells, among others. Over the years, different approaches for anticancer vaccines have been studied, such as mRNA and DNA vaccines, together with dendritic cell- and viral vector-based vaccines. Recently, an accumulating number of clinical studies have been performed to analyze the safety and potential efficacy of these agents. The aim of this review is to summarize recent advances regarding different types of therapeutic anticancer vaccines. Furthermore, it will discuss how recent advances in preclinical models can enhance clinical outcomes.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.); (J.Z.); (E.B.)
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.); (J.Z.); (E.B.)
| | - Jan Zadworny
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.); (J.Z.); (E.B.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.); (J.Z.); (E.B.)
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.); (J.Z.); (E.B.)
| |
Collapse
|
24
|
Zhou Y, Wei Y, Tian X, Wei X. Cancer vaccines: current status and future directions. J Hematol Oncol 2025; 18:18. [PMID: 39962549 PMCID: PMC11834487 DOI: 10.1186/s13045-025-01670-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant interest, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initiate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, introduce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with standard treatments and other immunomodulatory approaches to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yingqiong Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Fidaleo AM, Bach MD, Orbeta S, Abdullaev IF, Martino N, Adam AP, Boulos MA, Dulin NO, Paul AR, Kuo YH, Mongin AA. LRRC8A-containing anion channels promote glioblastoma proliferation via a WNK1/mTORC2-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636139. [PMID: 39975357 PMCID: PMC11838495 DOI: 10.1101/2025.02.02.636139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Leucine-rich repeat-containing protein 8A (LRRC8A) is the essential subunit of ubiquitous volume-regulated anion channels (VRACs). LRCC8A is overexpressed in several cancers and promotes negative survival outcomes via a poorly defined mechanism. Here, we explored the role of LRRC8A and VRACs in the progression of glioblastoma (GBM), the most common and deadly primary brain tumor. We found that, as compared to healthy controls, LRRC8A mRNA was strongly upregulated in surgical GBM specimens, patient-derived GBM cell lines, and GBM datasets from The Cancer Genome Atlas (TCGA). Our in-silico analysis indicated that patients belonging to the lowest LRRC8A expression quartile demonstrated a trend for extended life expectancy. In patient-derived GBM cultures, siRNA-driven LRRC8A knockdown reduced cell proliferation and additionally decreased intracellular chloride levels and inhibited activity of mTOR complex 2. The antiproliferative effect of LRRC8A downregulation was recapitulated with a pharmacological inhibitor of VRAC. Our ensuing biochemical and molecular biology analyses established that the LRRC8A-containing VRACs facilitate GBM proliferation via a new mechanism involving non-enzymatic actions of the chloride-sensitive protein kinase WNK1. Accordingly, the chloride-bound WNK1 stimulates mTORC2 and the mTORC2-dependent protein kinases AKT and SGK, which promote proliferation. These findings establish the new mTORC2-centric axis for VRAC dependent regulation of cellular functions and uncover potential targets for GBM intervention.
Collapse
Affiliation(s)
- Antonio M Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Martin D Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Iskandar F Abdullaev
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Mateo A Boulos
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexandra R Paul
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Yu-Hung Kuo
- Neurosurgery, Luminis Health Anne Arundel Medical Center, Annapolis, MD, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
26
|
Dai Y, Yu X, Zhao Y, Wei J, Lin D, Wang J, Zhang R, Yuan X, Li S, Huang S, Liu Q, Zhang Z. Targeted Modulation of the Meningeal Lymphatic Reverse Pathway for Immunotherapy of Breast Cancer Brain Metastases. ACS NANO 2025; 19:4830-4844. [PMID: 39818794 DOI: 10.1021/acsnano.4c15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Treatment of tumor brain metastases remains challenging due to the ineffectiveness of drugs in crossing the blood-brain barrier (BBB). Here, we proposed a potential strategy to target and modulate the meningeal lymphatic system for immunotherapy of breast cancer brain metastases (BCBM) through peripheral administration. CT/fluorescence dual-modality imaging demonstrated that the phospholipid nanoprobe (α-PLNPs) through intracisternal magna injection effectively labeled and long-range tracked the meningeal lymphatic pathway from meningeal lymphatic vessels (MLVs) to periphery drainage cervical lymph nodes (CLNs). Interestingly, the reverse pathway from CLNs to MLVs was also successfully labeled with α-PLNPs through cervical subcutaneous injection, facilitating the noninvasive delivery of immunomodulators to the meningeal lymphatics. Given this, we used melittin-carrying α-M-PLNPs to trigger the modulation of the meningeal lymphatic reverse pathway, which effectively prevents BCBM and prolongs the survival of mice through activating the antigen-presenting cells in the CLNs and promoting the migration of CD8+ T cells into the metastatic brain tumors. This study highlights the potential of the meningeal lymphatic reverse pathway for the immunotherapy of BCBM, which holds great promise for central nervous system disease therapy without the need for drug delivery via BBB.
Collapse
Affiliation(s)
- Yanfeng Dai
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Xiang Yu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Yifan Zhao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Lin
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jialu Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ren Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuenan Yuan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sanmu Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Songlin Huang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
| | - Qian Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Zhihong Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
27
|
Ma K, Wang L, Li W, Tang T, Ma B, Zhang L, Zhang L. Turning cold into hot: emerging strategies to fire up the tumor microenvironment. Trends Cancer 2025; 11:117-134. [PMID: 39730243 DOI: 10.1016/j.trecan.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lin Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Tingting Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China; PRAG Therapy Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
28
|
Hexem E, Taha TAEA, Dhemesh Y, Baqar MA, Nada A. Deciphering glioblastoma: Unveiling imaging markers for predicting MGMT promoter methylation status. Curr Probl Cancer 2025; 54:101156. [PMID: 39531875 DOI: 10.1016/j.currproblcancer.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma, the most common primary malignant tumor of the central nervous system in adults, is also among the most lethal. Despite a comprehensive treatment approach which utilizes surgery and postoperative chemoradiation, prognosis typically remains dismal. However certain epigenetic modifications, such as methylation of the MGMT promoter, have been proven to correlate with improved post-treatment outcomes. The 2021 WHO classification emphasizes molecular characteristics, highlighting shared genomic alterations across different grades and positioning MGMT methylation as a key influencer of outcomes. A combined diagnostic approach involving current imaging technology and emerging radiomics and deep learning models may allow for timely and accurate prediction of MGMT methylation status and therefore earlier and more individualized treatment and prognostication. Though these advanced radiomics models are rapidly emerging, additional development, standardization, and implementation may lead to a higher and more individualized level of patient care. This review explores the potential of imaging features in predicting MGMT promoter methylation, a critical determinant of therapeutic response and patient outcomes.
Collapse
Affiliation(s)
- Eric Hexem
- University of Missouri-Columbia Diagnostic Radiology Department, Columbia, MO, United States
| | | | - Yaseen Dhemesh
- School of Medicine, Washington University in Saint Louis, St. Louis, MO, United States
| | - Mohammad Aneel Baqar
- University of Missouri-Columbia Diagnostic Radiology Department, Columbia, MO, United States
| | - Ayman Nada
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in Saint Louis, St. Louis, MO, United States.
| |
Collapse
|
29
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
30
|
de Godoy LL, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S, Brem S, Chawla S, Mohan S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sci 2025; 15:146. [PMID: 40002479 PMCID: PMC11852837 DOI: 10.3390/brainsci15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based predictive model, as well as to identify clinical factors impacting survival outcomes in these patients. Methods: We report six patients with glioblastoma that had an overall survival longer than 5 years. When tumor specimens were available from second-stage surgery, histopathological analyses were used to classify between TP (>25% characteristics of malignant neoplasms; n = 2) and PsP (<25% characteristics of malignant neoplasms; n = 2). In the absence of histopathology, modified RANO criteria were assessed to determine the presence of TP (n = 1) or PsP (n = 1). The predictive probabilities (PPs) of tumor progression were measured from contrast-enhancing regions of neoplasms using a multiparametric MRI-based prediction model. Subsequently, these PP values were used to define each lesion as TP (PP ≥ 50%) or PsP (PP < 50%). Additionally, detailed clinical information was collected. Results: Our predictive model correctly identified all patients with TP (n = 3) and PsP (n = 3) cases, reflecting a significant concordance between histopathology/modified RANO criteria and PP values. The overall survival varied from 5.1 to 12.3 years. Five of the six glioblastoma patients were MGMT promoter methylated. All patients were female, with a median age of 56 years. Moreover, all six patients had a good functional status (KPS ≥ 70), underwent near-total/complete resection, and received alternative therapies. Conclusions: Multiparametric MRI can aid in assessing treatment response in long-term-surviving glioblastoma patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Archith Rajan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Amir Banihashemi
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Thara Patel
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Bagley
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Suyash Mohan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| |
Collapse
|
31
|
Gong G, Jiang L, Zhou J, Su Y. Advancements in targeted and immunotherapy strategies for glioma: toward precision treatment. Front Immunol 2025; 15:1537013. [PMID: 39877359 PMCID: PMC11772277 DOI: 10.3389/fimmu.2024.1537013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
In recent years, significant breakthroughs have been made in cancer therapy, particularly with the development of molecular targeted therapies and immunotherapies, owing to advances in tumor molecular biology and molecular immunology. High-grade gliomas (HGGs), characterized by their high malignancy, remain challenging to treat despite standard treatment regimens, including surgery, radiotherapy, chemotherapy, and tumor treating fields (TTF). These therapies provide limited efficacy, highlighting the need for novel treatment strategies. Molecular targeted therapies and immunotherapy have emerged as promising avenues for improving treatment outcomes in high-grade gliomas. This review explores the current status and recent advancements in targeted and immunotherapeutic approaches for high-grade gliomas.
Collapse
Affiliation(s)
- Guangyuan Gong
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Lang Jiang
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Jing Zhou
- Department of Thoracic Surgery, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Yuanchao Su
- Department of Emergency Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| |
Collapse
|
32
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress. MOLECULAR BIOMEDICINE 2025; 6:3. [PMID: 39789208 PMCID: PMC11717780 DOI: 10.1186/s43556-024-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
33
|
Hu W, Cui X, Liu H, Li Z, Chen X, Wang Q, Zhang G, Wen E, Lan J, Chen J, Liu J, Kang C, Chen L. CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD +/NADH ratio. J Exp Clin Cancer Res 2025; 44:3. [PMID: 39754188 PMCID: PMC11697892 DOI: 10.1186/s13046-024-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive. METHODS A multi-step process of machine learning algorithms was implemented to construct the glioma stemness-related score (GScore). Further in silico and patient tissue analyses validated the predictive ability of the GScore and identified a potential target, CYP3A5. Loss-of-function or gain-of-function genetic experiments were performed to assess the impact of CYP3A5 on the self-renewal and chemoresistance of GSCs both in vitro and in vivo. Mechanistic studies were conducted using nontargeted metabolomics, RNA-seq, seahorse, transmission electron microscopy, immunofluorescence, flow cytometry, ChIP‒qPCR, RT‒qPCR, western blotting, etc. The efficacy of pharmacological inhibitors of CYP3A5 was assessed in vivo. RESULTS Based on the proposed GScore, we identify a GSC target CYP3A5, which is highly expressed in GSCs and temozolomide (TMZ)-resistant GBM patients. This elevated expression of CYP3A5 is attributed to transcription factor STAT3 activated by EGFR signaling or TMZ treatment. Depletion of CYP3A5 impairs self-renewal and TMZ resistance of GSCs. Mechanistically, CYP3A5 maintains mitochondrial fitness to promote GSC metabolic adaption through the NAD⁺/NADH-SIRT1-PGC1α axis. Additionally, CYP3A5 enhances the activity of NAD-dependent enzyme PARP to augment DNA damage repair. Treatment with CYP3A5 inhibitor alone or together with TMZ effectively suppresses tumor growth in vivo. CONCLUSION Together, this study suggests that GSCs activate STAT3 to upregulate CYP3A5 to fine-tune NAD⁺/NADH for the enhancement of mitochondrial functions and DNA damage repair, thereby fueling tumor stemness and conferring TMZ resistance, respectively. Thus, CYP3A5 represents a promising target for GBM treatment.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hongyu Liu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xu Chen
- China Medical University, Shenyang, Liaoning, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Guolu Zhang
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Er Wen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Lan
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Junyi Chen
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| | - Ling Chen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Nawabi NLA, Saway BF, Jha R, Pereira M, Mehta NH, Das A, Zukas A, Lindhorst S, Strickland BA. Current trends in the allocation of National Institute of Health funding of brain tumor research. Neurooncol Adv 2025; 7:vdae203. [PMID: 40191402 PMCID: PMC11969036 DOI: 10.1093/noajnl/vdae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Background The National Institute of Health (NIH) provides a sizable annual budget toward brain tumor research. However, funding allocation for specific pathologies remains poorly described. We aimed to characterize the current landscape of NIH funding toward brain tumors as a function of pathology. Methods NIHRePORTER was queried to identify studies focused on glioblastoma, pediatric glioma, oligodendroglioma, brain metastasis, meningioma, pituitary adenoma, and vestibular schwannoma, from 2000 to 2023. Studies with R, U, and P funding mechanisms were included. Data were compiled and assessed according to pathology. Results Across these 7 tumors, 3320 unique studies with R, U, or P funding mechanisms were identified from 2000 to 2023. These were conducted across 480 unique institutions. The sum of funds allocated to all studies was $1 607 662 631. Glioblastoma commanded the largest portion of funds, representing 54% of R mechanisms, 55% of R01-funded studies, 48% of U mechanisms, and 49% of P mechanisms, and accounted for 51% ($813 556 423) of total funding. Brain metastasis was the second most-funded tumor, representing 31% of all R mechanisms, 31% of all R01-funded studies, 26% of all U mechanisms, and 28% of all P mechanisms, and accounted for 29% ($472 715 745) of funding. The remaining 14% of R mechanisms, 26% of U mechanisms, and 23% of P mechanisms focused on the remaining pathologies, and accounted for 20% ($321 390 463) of funding. Conclusions The current landscape of NIH funding for brain tumor research indicates that awarded mechanisms prioritize malignant intra-axial malignancies. Despite their prevalence, skull base neoplasia is far less represented in NIH-funded studies.
Collapse
Affiliation(s)
- Noah L A Nawabi
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Brian F Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rohan Jha
- Harvard Medical School, Boston, Massachusetts
| | - Matheus Pereira
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Zukas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Scott Lindhorst
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Ben A Strickland
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
35
|
Ng AT, Steve T, Jamouss KT, Arham A, Kawtharani S, Assi HI. The challenges and clinical landscape of glioblastoma immunotherapy. CNS Oncol 2024; 13:2415878. [PMID: 39469854 PMCID: PMC11524205 DOI: 10.1080/20450907.2024.2415878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Glioblastoma is associated with a dismal prognosis with the standard of care involving surgery, radiation therapy and temozolomide chemotherapy. This review investigates the features that make glioblastoma difficult to treat and the results of glioblastoma immunotherapy clinical trials so far. There have been over a hundred clinical trials involving immunotherapy in glioblastoma. We report the survival-related outcomes of every Phase III glioblastoma immunotherapy trial with online published results we could find at the time of writing. To date, the DCVax-L vaccine is the only immunotherapy shown to have statistically significant increased median survival compared with standard-of-care in a Phase III trial: 19.3 months versus 16.5 months. However, this trial used an external control group to compare with the intervention which limits its quality of evidence. In conclusion, glioblastoma immunotherapy requires further investigation to determine its significance in improving disease survival.
Collapse
Affiliation(s)
- Andrew Timothy Ng
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Tyler Steve
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Kevin T Jamouss
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Abdul Arham
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Sarah Kawtharani
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Department of Hematology and Oncology, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| |
Collapse
|
36
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
37
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
38
|
Weller J, Potthoff A, Zeyen T, Schaub C, Duffy C, Schneider M, Herrlinger U. Current status of precision oncology in adult glioblastoma. Mol Oncol 2024; 18:2927-2950. [PMID: 38899374 PMCID: PMC11619805 DOI: 10.1002/1878-0261.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of precision oncology, the application of targeted drugs based on comprehensive molecular profiling, has revolutionized treatment strategies in oncology. This review summarizes the current status of precision oncology in glioblastoma (GBM), the most common and aggressive primary brain tumor in adults with a median survival below 2 years. Targeted treatments without prior target verification have consistently failed. Patients with BRAF V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell heterogeneity, and pathway redundancies. Systematic screening for actionable molecular alterations resulted in low rates (< 10%) of targeted treatments. Efficacy was observed in one-third and currently appears to be limited to BRAF-, VEGFR-, and mTOR-directed treatments. Advancing precision oncology for GBM requires consideration of pathways instead of single alterations, new trial concepts enabling rapid and adaptive drug evaluation, a focus on drugs with sufficient bioavailability in the CNS, and the extension of target discovery and validation to the tumor microenvironment, tumor cell networks, and their interaction with immune cells and neurons.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Thomas Zeyen
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Christina Schaub
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Cathrina Duffy
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| |
Collapse
|
39
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
40
|
Brem S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav Immun Health 2024; 42:100859. [PMID: 39512605 PMCID: PMC11541944 DOI: 10.1016/j.bbih.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 11/15/2024] Open
Abstract
Immuno-oncology, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer care with dramatic, long-term responses and increased survival, including patients with metastatic cancer to the brain. Glioblastomas, and other primary brain tumors, are refractory to ICIs as monotherapy or in combination with standard therapy. The tumor microenvironment (TME) poses multiple biological hurdles: blood-brain barrier, immune suppression, heterogeneity, and tumor infiltration. Genomic analysis of the senescence-associated secretory phenotype (SASP) and preclinical models of glioma suggest that an exciting approach would entail reprogramming of the glioma microenvironment, attenuating the pro-inflammatory, pro-tumorigenic cytokines of the SASP, especially interleukin-6 (IL-6). A testable hypothesis now proposed is to modulate the immune system by harnessing the body's 'inflammatory reflex' to reduce cytokines. Vagus nerve stimulation can activate T cell immunity by the cholinergic, α7nicotinic acetylcholine receptor agonist (α7nAchR), and suppress IL-6 systemically, as well as other pro-inflammatory cytokines of the SASP, interleukin -1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). The hypothesis predicts that electrical activation of the vagus nerve, with cytokine reduction, in combination with ICIs, would convert an immune resistant ("cold") tumor to an immune responsive ("hot") tumor, and halt glioma progression. The hypothesis also envisions cancer as an immune "dysautonomia" whereby a therapeutic intervention, vagus nerve stimulation (VNS), resets the systemic and local cytokine levels. A prospective, randomized, phase II clinical trial, to confirm the hypothesis, is a logical, exigent, next step. Cytokine reduction by VNS could also be useful for other forms of human cancer, e.g., breast, colorectal, head and neck, lung, melanoma, ovarian, pancreatic, and prostate cancer, as the emerging field of "cancer neuroscience" shows a role for neural regulation of multiple tumor types. Because IL-6, and companion pro-inflammatory cytokines, participate in the initiation, progression, spread and recurrence of cancer, minimally invasive VNS could be employed to suppress glioma or cancer progression, while also mitigating depression and/or seizures, thereby enhancing quality of life. The current hypothesis reimagines glioma pathophysiology as a dysautonomia with the therapeutic objective to reset the autonomic nervous system and form an immune responsive state to halt tumor progression and prevent recurrence. VNS, as a novel method to control cancer, can be administered with ICIs, standard therapy, or in clinical trials, combined with emerging immunotherapy: dendritic cell, mRNA, or chimeric antigen receptor (CAR) T cell vaccines.
Collapse
Affiliation(s)
- Steven Brem
- University of Pennsylvania, Department of Neurosurgery, Perelman Center for Advanced Medicine, 15-141, 3400 Civic Center Blvd., Philadelphia, PA, 19104, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
41
|
Fukushima CM, de Groot J. Updates for newly diagnosed and recurrent glioblastoma: a review of recent clinical trials. Curr Opin Neurol 2024; 37:666-671. [PMID: 39258745 PMCID: PMC11540275 DOI: 10.1097/wco.0000000000001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor. We summarize recent advances in radiotherapy, immunotherapy, and targeted therapy approaches for the treatment of newly diagnosed and recurrent glioblastoma. We also introduce ongoing clinical trials. RECENT FINDINGS Recent clinical trials have explored multiple novel strategies to treat GBM including the use of oncoviruses, chimeric antigen receptor (CAR) T cell therapy, vaccines, radiotherapy, and novel drug delivery techniques to improves drug penetrance across the blood brain barrier. Approaches to improve drug delivery to brain tumors have the potential to expand treatment options of existing therapies that otherwise have poor brain tumor penetrance. Immunotherapy has been of keen interest in both newly diagnosed and recurrent glioblastoma. Vaccines SurVaxM and DCVax-L have shown initial promise in phase II and III trials, respectively. CAR T cell therapy trials are in their early phases but hold promise in both newly diagnosed and recurrent glioblastoma. SUMMARY Although progress to improve outcomes for GBM patients has been modest, multiple novel strategies utilizing combination therapies, focused ultrasound to improve drug delivery, and novel immunotherapies are underway.
Collapse
Affiliation(s)
| | - John de Groot
- Department of Neurology and Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Palavani LB, Mitre LP, Camerotte R, Nogueira BV, Canto GL, Chen HC, Pacheco-Barrios N, Ferreira MY, Batista S, Andreão FF, Polverini AD, Montenegro TS, Paiva W, Ferreira C, Bertani R, D'Amico RS. Advancements and challenges: immunotherapy therapy in high-grade glioma - a meta-analysis of randomized clinical trials. J Neurooncol 2024; 170:483-493. [PMID: 39230804 DOI: 10.1007/s11060-024-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND High-grade gliomas (HGG) are the most aggressive primary brain tumors with poor prognoses despite conventional treatments. Immunotherapy has emerged as a promising avenue due to its potential to elicit a targeted immune response against tumor cells. OBJECTIVE This meta-analysis aimed to evaluate the efficacy and safety of various immunotherapeutic strategies, including immune checkpoint inhibitors (ICI), virotherapy, and dendritic cell vaccines (DCV) in treating HGG. METHODS Following the PRISMA framework, we searched PubMed, Cochrane, and Embase for studies reporting outcomes of HGG patients treated with immunotherapy. Key metrics included overall survival, progression-free survival, and treatment-related adverse events. RESULTS We reviewed 47 studies, analyzing data from 3674 HGG patients treated with immunotherapy. The mean overall survival for patients treated with ICI was 11.05 months, with virotherapy at 11.79 months and notably longer for DCV at 24.11 months. The mean progression-free survival (PFS) for ICIs was 3.65 months. Virotherapy demonstrated a PFS favoring the control group, indicating minimal impact, while DCV showed substantial PFS improvement with a median of 0.43 times lower hazard compared to controls (95% CI: 29-64%). Adverse events were primarily Grade 1 or 2 for ICI, included a Grade 5 event for virotherapy, and were predominantly Grade 1 or 2 for DCV, indicating a favorable safety profile. CONCLUSION Immunotherapy holds potential as an effective treatment for HGG, especially DCV. However, results vary significantly with the type of therapy and individual patient profiles. Further randomized controlled trials are necessary to establish robust clinical guidelines and optimize treatment protocols.
Collapse
Affiliation(s)
| | - Lucas Pari Mitre
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, Brazil
| | | | | | | | | | | | - Márcio Yuri Ferreira
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | - Sávio Batista
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Allan Dias Polverini
- Neurosurgical Oncology Division, Barretos Cancer Hospital, Barretos, São Paulo, SP, Brazil
| | - Thiago S Montenegro
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wellingson Paiva
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | | | - Raphael Bertani
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| |
Collapse
|
43
|
Habibi MA, Mirjani MS, Ahmadvand MH, Delbari P, Arab S, Minaee P, Eazi S, Ahmadpour S. The clinical utility of autologous tumor lysate-loaded dendritic cell vaccination for patients with glioma: A systematic review and meta-analysis. Asia Pac J Clin Oncol 2024; 20:671-680. [PMID: 39244742 DOI: 10.1111/ajco.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Dendritic cell (DC) vaccines show promise for glioma treatment, but optimal use remains uncertain. This meta-analysis examined DC vaccine efficacy and safety for gliomas. METHODS This systematic review and meta-analysis study was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. From the date of inception to October 23, 2023, electronic databases PubMed, Embase, Web of Science, and Scopus have been thoroughly evaluated. RESULTS A total of 12 studies with 998 patients and a mean age ranging from 40.2 to 56 years were included. Across 12 articles, DC vaccine 6-month overall survival (OS) was 100% [95% confidence interval {95%CI}: 100%-100%]. Respectively, 12-month OS reported 75% [95%CI: 65%-85%] but declined to 32% [95%CI: 20%-43%] for 24-month OS. 6- and 12-month progression-free survival reached 49% [95%CI: 21%-77%] and 19% [95%CI:8%-30%]. Studying radiological outcomes shows that complete response and partial response rates were 13% [95%CI: 17%-42%], and 26% [95%CI: 10%-42%], though stable disease reached 33% [95%CI: 15%-51%], suggesting predominant antineoplastic effects. The progressive disease rate also was 24% [95%CI: 9%-57%]. CONCLUSIONS In gliomas, DC vaccinations show a temporary efficacy; stability is more prevalent than regression. Impacts favor decreased resistance to early disease. Enhancing efficacy remains critical. Early therapy can be enhanced by appropriate supplementary therapy integration.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Pouria Delbari
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Arab
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
44
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
45
|
Ye L, Ye C, Li P, Wang Y, Ma W. Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches. Brief Bioinform 2024; 26:bbaf037. [PMID: 39879386 PMCID: PMC11775472 DOI: 10.1093/bib/bbaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM. Colocalization analysis was performed to validate genetic associations, while scPagwas analysis was used to evaluate the relevance of key UDIPs to GBM at the cellular level. Among 512 UDIPs tested, 23 were found to have significant causal associations with GBM. Notably, UDIPs such as T1-33 (OR = 1.007, 95% CI = 1.001 to 1.012, P = .022), T1-34 (OR = 1.012, 95% CI = 1.001-1.023, P = .028), and T1-96 (OR = 1.009, 95% CI = 1.001-1.019, P = .046) were found to have a genetic association with GBM. Furthermore, T1-34 and T1-96 were significantly associated with GBM recurrence, with P-values < .0001 and P < .001, respectively. In addition, scPagwas analysis revealed that T1-33, T1-34, and T1-96 are distinctively linked to different GBM subtypes, with T1-33 showing strong associations with the neural progenitor-like subtype (NPC2), T1-34 with mesenchymal (MES2) and neural progenitor (NPC1) cells, and T1-96 with the NPC2 subtype. T1-33, T1-34, and T1-96 hold significant potential for predicting tumor recurrence and aiding in the development of personalized GBM treatment strategies.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Cheng Ye
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
46
|
Chen J, Gao Y, Zhong J, Wu X, Leng Z, Liu M, Wang Y, Wang Y, Yang X, Huang N, Xiao F, Zhang M, Liu X, Zhang N. Lnc-H19-derived protein shapes the immunosuppressive microenvironment of glioblastoma. Cell Rep Med 2024; 5:101806. [PMID: 39481387 PMCID: PMC11604490 DOI: 10.1016/j.xcrm.2024.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) is a prominent feature of glioblastoma (GBM), the most lethal primary brain cancer resistant to current immunotherapies. The mechanisms underlying GBM-TME remain to be explored. We report that long non-coding RNA (LncRNA) H19 encodes an immune-related protein called H19-IRP. Functionally separated from H19 RNA, H19-IRP promotes GBM immunosuppression by binding to the CCL2 and Galectin-9 promoters and activating their transcription, thereby recruiting myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), leading to T cell exhaustion and an immunosuppressive GBM-TME. H19-IRP, overexpressed in clinical GBM samples, acts as a tumor-associated antigen (TAA) presented by major histocompatibility complex class I (MHC-I). A circular RNA vaccine targeting H19-IRP (circH19-vac) triggers a potent cytotoxic T cell response against GBM and inhibits GBM growth. Our results highlight the unrevealed function of H19-IRP in creating immunosuppressive GBM-TME by recruiting MDSCs and TAMs, supporting the idea of targeting H19-IRP with cancer vaccine for GBM treatment.
Collapse
MESH Headings
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- Tumor Microenvironment/immunology
- Humans
- Animals
- Galectins/metabolism
- Galectins/genetics
- Galectins/immunology
- Cell Line, Tumor
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Brain Neoplasms/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/immunology
- Chemokine CCL2/genetics
- Mice
- Gene Expression Regulation, Neoplastic
- Macrophages/immunology
- Macrophages/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Mice, Inbred C57BL
- Cancer Vaccines/immunology
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Zhaojie Leng
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Ming Liu
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yesheng Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yuan Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Xuesong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
47
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
48
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Liu J, Peng J, Jiang J, Liu Y. Clinical immunotherapy in glioma: current concepts, challenges, and future perspectives. Front Immunol 2024; 15:1476436. [PMID: 39555054 PMCID: PMC11564147 DOI: 10.3389/fimmu.2024.1476436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma is one of the common tumors in the central nervous system, and its treatment methods (surgery, radiotherapy, and chemotherapy) lack specificity and have a poor prognosis. With the development of immunology, cell biology, and genomics, tumor immunotherapy has ushered in a new era of tumor therapy, achieving significant results in other invasive cancers such as advanced melanoma and advanced non-small cell lung cancer. Currently, the clinical trials of immunotherapy in glioma are also progressing rapidly. Here, this review summarizes promising immunotherapy methods in recent years, reviews the current status of clinical trials, and discusses the challenges and prospects of glioma immunotherapy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Jingjian Peng
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Jian Jiang
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Wong CE, Chang Y, Chen PW, Huang YT, Chang YC, Chiang CH, Wang LC, Lee PH, Huang CC, Hsu HJ, Lee JS. Dendritic cell vaccine for glioblastoma: an updated meta-analysis and trial sequential analysis. J Neurooncol 2024; 170:253-263. [PMID: 39167243 DOI: 10.1007/s11060-024-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dendritic cell (DC) vaccine is an emerging immunotherapy that could potentially improve glioblastoma survival. The first phase III clinical trial of DC vaccine was recently published. This meta-analysis aims to update and reappraise existing evidence on the efficacy of DC vaccine in patients with glioblastoma. METHODS We searched PubMed, Embase, and Cochrane Library for clinical trials of DC vaccine for glioblastoma. The quality of the studies was assessed using the RoB 2.0 and ROBINS-I tools. The results of overall survival (OS) and progression-free survival (PFS) were pooled using hazard ratios (HRs) with corresponding 95% confidence intervals (CI). Summary effects were evaluated using random effects models. Trial sequential analysis (TSA) was performed. RESULTS Seven clinical trials involving 3,619 patients were included. DC vaccine plus standard care was associated with significantly improved OS (HR = 0.71; 95% CI, 0.57 - 0.88) and PFS (HR = 0.65; 95% CI, 0.43 - 0.98). In the subgroup of newly diagnosed glioblastoma, DC vaccine was associated with improved PFS (HR = 0.59; 95% CI, 0.39 - 0.90). TSA of OS showed that the cumulative z-score line for the DC vaccine crossed the benefit boundary and reached the required sample size. TSA of PFS and subgroup analysis of newly diagnosed glioblastoma showed that the required sample size was not reached. CONCLUSIONS This updated meta-analysis, which included the first phase III trial of a DC vaccine for glioblastoma, demonstrated that the DC vaccine was associated with improved OS. Moreover, TSA showed that the required sample size was reached, indicating a true-positive result. Future studies are required for patient subgroups with newly diagnosed and recurrent glioblastoma.
Collapse
Affiliation(s)
- Chia-En Wong
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Ta Huang
- Surgical Intensive Care Unit, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Liang-Chao Wang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, Tainan, 701, Taiwan.
| | - Jung-Shun Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Neurosurgery, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|