1 |
Shakked A, Petrover Z, Aharonov A, Ghiringhelli M, Umansky K, Kain D, Elkahal J, Divinsky Y, Nguyen PD, Miyara S, Friedlander G, Savidor A, Zhang L, Perez DE, Sarig R, Lendengolts D, Bueno-levy H, Kastan N, Levin Y, Bakkers J, Gepstein L, Tzahor E. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury. Nat Cardiovasc Res 2023. [DOI: 10.1038/s44161-023-00250-w] [Reference Citation Analysis]
|
2 |
Vitale E, Rosso R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. Apelin-13 Increases Functional Connexin-43 through Autophagy Inhibition via AKT/mTOR Pathway in the Non-Myocytic Cell Population of the Heart. IJMS 2022;23:13073. [DOI: 10.3390/ijms232113073] [Reference Citation Analysis]
|
3 |
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022;:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Reference Citation Analysis]
|
4 |
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Correction: Marsh et al. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J. Cardiovasc. Dev. Dis. 2021, 8, 52. J Cardiovasc Dev Dis 2022;9:121. [PMID: 35448097 DOI: 10.3390/jcdd9040121] [Reference Citation Analysis]
|
5 |
Shakked A, Petrover Z, Aharonov A, Ghiringhelli M, Umansky K, Nguyen PD, Kain D, Elkahal J, Divinsky Y, Miyara S, Friedlander G, Savidor A, Zhang L, Perez D, Kastan N, Lendengolts D, Levin Y, Bakkers J, Gepstein L, Tzahor E. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischaemic injury.. [DOI: 10.1101/2022.02.22.481415] [Reference Citation Analysis]
|
6 |
Héja L, Simon Á, Szabó Z, Kardos J. Connexons Coupling to Gap Junction Channel: Potential Role for Extracellular Protein Stabilization Centers. Biomolecules 2022;12:49. [DOI: 10.3390/biom12010049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Htet M, Nally JE, Martin PE, Dempsie Y. New Insights into Pulmonary Hypertension: A Role for Connexin-Mediated Signalling. IJMS 2021;23:379. [DOI: 10.3390/ijms23010379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021;22:10186. [PMID: 34638526 DOI: 10.3390/ijms221910186] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
9 |
Strauss RE, Mezache L, Veeraraghavan R, Gourdie RG. The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent Manner. Biomolecules 2021;11:1192. [PMID: 34439858 DOI: 10.3390/biom11081192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
10 |
Strauss RE, Mezache L, Veeraraghavan R, Gourdie RG. The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent Manner.. [DOI: 10.1101/2021.06.19.449103] [Reference Citation Analysis]
|