BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ferko M, Andelová N, Szeiffová Bačová B, Jašová M. Myocardial Adaptation in Pseudohypoxia: Signaling and Regulation of mPTP via Mitochondrial Connexin 43 and Cardiolipin. Cells 2019;8:E1449. [PMID: 31744200 DOI: 10.3390/cells8111449] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Riquelme MA, Hua R, Acosta FM, Gu S, Jiang JX. Connexin 43 hemichannels regulate mitochondrial ATP generation, mobilization, and mitochondrial homeostasis against oxidative stress. eLife 2022;11. [DOI: 10.7554/elife.82206] [Reference Citation Analysis]
2 Andelova N, Waczulikova I, Kunstek L, Talian I, Ravingerova T, Jasova M, Suty S, Ferko M. Dichloroacetate as a metabolic modulator of heart mitochondrial proteome under conditions of reduced oxygen utilization. Sci Rep 2022;12:16348. [PMID: 36175475 DOI: 10.1038/s41598-022-20696-5] [Reference Citation Analysis]
3 Zhang J, Riquelme MA, Hua R, Acosta FM, Gu S, Jiang JX. Connexin 43 Hemichannels Regulate Mitochondrial ATP Generation, Mobilization, and Mitochondrial Homeostasis against Oxidative Stress.. [DOI: 10.1101/2022.08.05.502934] [Reference Citation Analysis]
4 Pecoraro M, Marzocco S, Popolo A. Diazoxide Needs Mitochondrial Connexin43 to Exert Its Cytoprotective Effect in a Cellular Model of CoCl2-Induced Hypoxia. Int J Mol Sci 2021;22:11599. [PMID: 34769027 DOI: 10.3390/ijms222111599] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021;12:177. [PMID: 33712058 DOI: 10.1186/s13287-021-02252-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
6 Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020;22:E260. [PMID: 33383853 DOI: 10.3390/ijms22010260] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
7 Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020;21:E7698. [PMID: 33080955 DOI: 10.3390/ijms21207698] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
8 Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020;10:E1225. [PMID: 32842488 DOI: 10.3390/biom10091225] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
9 Javadov S, Kozlov AV, Camara AKS. Mitochondria in Health and Diseases. Cells 2020;9:E1177. [PMID: 32397376 DOI: 10.3390/cells9051177] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 24.0] [Reference Citation Analysis]
10 Andelova N, Waczulikova I, Talian I, Sykora M, Ferko M. mPTP Proteins Regulated by Streptozotocin-Induced Diabetes Mellitus Are Effectively Involved in the Processes of Maintaining Myocardial Metabolic Adaptation. Int J Mol Sci 2020;21:E2622. [PMID: 32283821 DOI: 10.3390/ijms21072622] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]