BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gascoyne PR, Shim S. Isolation of circulating tumor cells by dielectrophoresis. Cancers (Basel) 2014;6:545-79. [PMID: 24662940 DOI: 10.3390/cancers6010545] [Cited by in Crossref: 144] [Cited by in F6Publishing: 118] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Fazelkhah A, Afshar S, Durham N, Butler M, Salimi E, Bridges G, Thomson D. Parallel single‐cell optical transit dielectrophoresis cytometer. ELECTROPHORESIS 2020;41:720-8. [DOI: 10.1002/elps.201900393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Turcan I, Olariu MA. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization. ACS Comb Sci 2020;22:554-78. [PMID: 32786320 DOI: 10.1021/acscombsci.0c00109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S, Zhang Z. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosensors and Bioelectronics 2022;202:114025. [DOI: 10.1016/j.bios.2022.114025] [Reference Citation Analysis]
4 Cheng SJ, Hsieh KY, Chen SL, Chen CY, Huang CY, Tsou HI, Kumar PV, Hsieh JC, Chen GY. Microfluidics and Nanomaterial-based Technologies for Circulating Tumor Cell Isolation and Detection. Sensors (Basel) 2020;20:E1875. [PMID: 32230996 DOI: 10.3390/s20071875] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Spencer D, Hollis V, Morgan H. Microfluidic impedance cytometry of tumour cells in blood. Biomicrofluidics 2014;8:064124. [PMID: 25553198 DOI: 10.1063/1.4904405] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
6 Kermanshah L, Poudineh M, Ahmed S, Nguyen LNM, Srikant S, Makonnen R, Pena Cantu F, Corrigan M, Kelley SO. Dynamic CTC phenotypes in metastatic prostate cancer models visualized using magnetic ranking cytometry. Lab Chip 2018;18:2055-64. [PMID: 29923581 DOI: 10.1039/c8lc00310f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
7 Shkolnikov V, Xin D, Chen CH. Continuous dielectrophoretic particle separation via isomotive dielectrophoresis with bifurcating stagnation flow. Electrophoresis 2019;40:2988-95. [PMID: 31538669 DOI: 10.1002/elps.201900267] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
8 Montoya Mira J, Sapre AA, Walker BS, Alvarez JB, Gustafson KT, Tu E, Fischer JM, Wong MH, Esener S, Chiu YJ. Label-free enrichment of rare unconventional circulating neoplastic cells using a microfluidic dielectrophoretic sorting device. Commun Biol 2021;4:1130. [PMID: 34561533 DOI: 10.1038/s42003-021-02651-8] [Reference Citation Analysis]
9 Kung YC, Niazi KR, Chiou PY. Tunnel dielectrophoresis for ultra-high precision size-based cell separation. Lab Chip 2021;21:1049-60. [PMID: 33313615 DOI: 10.1039/d0lc00853b] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Tang Y, Shi J, Li S, Wang L, Cayre YE, Chen Y. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci Rep 2014;4:6052. [PMID: 25116599 DOI: 10.1038/srep06052] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 10.5] [Reference Citation Analysis]
11 Rahmani A, Mohammadi A, Kalhor HR. A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment. Electrophoresis 2018;39:445-55. [PMID: 28944476 DOI: 10.1002/elps.201700166] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
12 Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018;10:1758835918794630. [PMID: 30181785 DOI: 10.1177/1758835918794630] [Cited by in Crossref: 149] [Cited by in F6Publishing: 136] [Article Influence: 37.3] [Reference Citation Analysis]
13 Tian F, Liu C, Lin L, Chen Q, Sun J. Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. TrAC Trends in Analytical Chemistry 2019;117:128-45. [DOI: 10.1016/j.trac.2019.05.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
14 Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2019;15:755-73. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Yousuff C, Ho E, Hussain K. I, Hamid N. Microfluidic Platform for Cell Isolation and Manipulation Based on Cell Properties. Micromachines 2017;8:15. [DOI: 10.3390/mi8010015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 6.4] [Reference Citation Analysis]
16 Semaan A, Bernard V, Kim DU, Lee JJ, Huang J, Kamyabi N, Stephens BM, Qiao W, Varadhachary GR, Katz MH, Shen Y, San Lucas FA, Gascoyne P, Alvarez HA, Maitra A, Guerrero PA. Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br J Cancer 2021;124:1970-7. [PMID: 33785875 DOI: 10.1038/s41416-021-01350-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Balasubramanian P, Kinders RJ, Kummar S, Gupta V, Hasegawa D, Menachery A, Lawrence SM, Wang L, Ferry-Galow K, Davis D, Parchment RE, Tomaszewski JE, Doroshow JH. Antibody-independent capture of circulating tumor cells of non-epithelial origin with the ApoStream® system.PLoS One. 2017;12:e0175414. [PMID: 28403214 DOI: 10.1371/journal.pone.0175414] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
18 Carvalho Â, Ferreira G, Seixas D, Guimarães-Teixeira C, Henrique R, Monteiro FJ, Jerónimo C. Emerging Lab-on-a-Chip Approaches for Liquid Biopsy in Lung Cancer: Status in CTCs and ctDNA Research and Clinical Validation. Cancers (Basel) 2021;13:2101. [PMID: 33925308 DOI: 10.3390/cancers13092101] [Reference Citation Analysis]
19 Tsai SC, Hung LY, Lee GB. An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods. Biomicrofluidics 2017;11:034122. [PMID: 28713478 DOI: 10.1063/1.4991476] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
20 Menachery A, Kumawat N, Qasaimeh M. Label-free microfluidic stem cell isolation technologies. TrAC Trends in Analytical Chemistry 2017;89:1-12. [DOI: 10.1016/j.trac.2017.01.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
21 Scida K, Eden A, Arroyo-Currás N, MacKenzie S, Satik Y, Meinhart CD, Eijkel JCT, Pennathur S. Fluorescence-Based Observation of Transient Electrochemical and Electrokinetic Effects at Nanoconfined Bipolar Electrodes. ACS Appl Mater Interfaces 2019;11:13777-86. [PMID: 30880379 DOI: 10.1021/acsami.9b01339] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Fikar P, Georgiev V, Lissorgues G, Holubova M, Lysak D, Georgiev D. 2DEP cytometry: distributed dielectrophoretic cytometry for live cell dielectric signature measurement on population level. Biomed Microdevices 2018;20. [DOI: 10.1007/s10544-017-0253-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Kim D, Sonker M, Ros A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal Chem 2019;91:277-95. [DOI: 10.1021/acs.analchem.8b05454] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
24 Xavier M, Oreffo ROC, Morgan H. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnol Adv 2016;34:908-23. [PMID: 27236022 DOI: 10.1016/j.biotechadv.2016.05.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
25 Mustafa A, Pedone E, Marucci L, Moschou D, Lorenzo MD. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells. Electrophoresis 2021. [PMID: 34717293 DOI: 10.1002/elps.202100031] [Reference Citation Analysis]
26 Jahangiri M, Khosravi S, Moghtaderi H, Ranjbar M, Abadijoo H, Sarmadi S, Izadi-mood N, Shirali E, Hoseinpour P, Gity M, Abbasvandi F, Mohajerzadeh L, Aghdam MK, Abdolahad M. Microfluidic platform with integrated electrical actuator to enrich and locating atypical/cancer cells from liquid cytology samples. Sensors and Actuators B: Chemical 2019;297:126733. [DOI: 10.1016/j.snb.2019.126733] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Loeian MS, Mehdi Aghaei S, Farhadi F, Rai V, Yang HW, Johnson MD, Aqil F, Mandadi M, Rai SN, Panchapakesan B. Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients. Lab Chip 2019;19:1899-915. [DOI: 10.1039/c9lc00274j] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
28 Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals 2022;15:75. [DOI: 10.3390/ph15010075] [Reference Citation Analysis]
29 Lewis JM, Heineck DP, Heller MJ. Detecting cancer biomarkers in blood: challenges for new molecular diagnostic and point-of-care tests using cell-free nucleic acids. Expert Rev Mol Diagn 2015;15:1187-200. [PMID: 26189641 DOI: 10.1586/14737159.2015.1069709] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
30 Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. Micromachines (Basel) 2020;11:E990. [PMID: 33153069 DOI: 10.3390/mi11110990] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Kikkeri K, Kerr BA, Bertke AS, Strobl JS, Agah M. Passivated-electrode insulator-based dielectrophoretic separation of heterogeneous cell mixtures. J Sep Sci 2020;43:1576-85. [PMID: 31991043 DOI: 10.1002/jssc.201900553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Rahmati M, Chen X. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation. Biomed Microdevices 2021;23:49. [PMID: 34581876 DOI: 10.1007/s10544-021-00587-8] [Reference Citation Analysis]
33 De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol Sci. 2019;40:172-186. [PMID: 30736982 DOI: 10.1016/j.tips.2019.01.006] [Cited by in Crossref: 162] [Cited by in F6Publishing: 147] [Article Influence: 54.0] [Reference Citation Analysis]
34 Xavier M, de Andrés MC, Spencer D, Oreffo ROC, Morgan H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J R Soc Interface 2017;14:20170233. [PMID: 28835540 DOI: 10.1098/rsif.2017.0233] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
35 Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020;20:288. [PMID: 32655320 DOI: 10.1186/s12935-020-01389-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
36 Abd Rahman N, Ibrahim F, Yafouz B. Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors (Basel) 2017;17:E449. [PMID: 28245552 DOI: 10.3390/s17030449] [Cited by in Crossref: 75] [Cited by in F6Publishing: 52] [Article Influence: 15.0] [Reference Citation Analysis]
37 Cemazar J, Ghosh A, Davalos RV. Electrical Manipulation and Sorting of Cells. In: Lee W, Tseng P, Di Carlo D, editors. Microtechnology for Cell Manipulation and Sorting. Cham: Springer International Publishing; 2017. pp. 57-92. [DOI: 10.1007/978-3-319-44139-9_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021;13:2189. [PMID: 34063272 DOI: 10.3390/cancers13092189] [Reference Citation Analysis]
39 Torres-Castro K, Honrado C, Varhue WB, Farmehini V, Swami NS. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Anal Bioanal Chem 2020;412:3847-57. [PMID: 32128645 DOI: 10.1007/s00216-020-02467-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
40 Korayem MH, Rastegar Z. Path planning in three dimensional live environment with randomly moving obstacles for viscoelastic bio-particle. Microsc Res Tech 2021. [PMID: 33974313 DOI: 10.1002/jemt.23767] [Reference Citation Analysis]
41 Dhar M, Wong J, Karimi A, Che J, Renier C, Matsumoto M, Triboulet M, Garon EB, Goldman JW, Rettig MB, Jeffrey SS, Kulkarni RP, Sollier E, Di Carlo D. High efficiency vortex trapping of circulating tumor cells. Biomicrofluidics 2015;9:064116. [PMID: 26697126 DOI: 10.1063/1.4937895] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
42 Miyamukai H, Yagi I, Uchida S, Takano M, Wakizaka Y, Enjoji T. Basic verification of cancer cell separation characteristics in a dielectrophoretic device using microcylindrical electrodes. Elect Comm in Japan 2021;104. [DOI: 10.1002/ecj.12328] [Reference Citation Analysis]
43 Korayem MH, Shahali S, Rastegar Z. Simulation of 3D nanomanipulation for rough spherical elastic and viscoelastic particles in a liquid medium; experimentally determination of cell's roughness parameters and Hamaker constant's correction. J Mech Behav Biomed Mater 2019;90:313-27. [PMID: 30396045 DOI: 10.1016/j.jmbbm.2018.10.007] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
44 S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019;40:1457-77. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
45 Ghassemi P, Ren X, Foster BM, Kerr BA, Agah M. Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry. Biosens Bioelectron 2020;150:111868. [PMID: 31767345 DOI: 10.1016/j.bios.2019.111868] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
46 Tu M, Chia D, Wei F, Wong D. Liquid biopsy for detection of actionable oncogenic mutations in human cancers and electric field induced release and measurement liquid biopsy (eLB). Analyst 2016;141:393-402. [PMID: 26645892 DOI: 10.1039/c5an01863c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
47 Liu Z, Chen R, Li Y, Liu J, Wang P, Xia X, Qin L. Integrated Microfluidic Chip for Efficient Isolation and Deformability Analysis of Circulating Tumor Cells. Adv Biosys 2018;2:1800200. [DOI: 10.1002/adbi.201800200] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Liu Z, Huang Y, Liang W, Bai J, Feng H, Fang Z, Tian G, Zhu Y, Zhang H, Wang Y, Liu A, Chen Y. Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. Lab Chip 2021;21:2881-91. [PMID: 34219135 DOI: 10.1039/d1lc00360g] [Reference Citation Analysis]
49 Khamenehfar A, Beischlag TV, Russell PJ, Ling MT, Nelson C, Li PC. Label-free isolation of a prostate cancer cell among blood cells and the single-cell measurement of drug accumulation using an integrated microfluidic chip. Biomicrofluidics 2015;9:064104. [PMID: 26594265 DOI: 10.1063/1.4934715] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
50 Zhang L, Li Q, Yang R, Xu Z, Kang Y, Xue P. Rapid prototyping of Nanoroughened polydimethylsiloxane surfaces for the enhancement of immunomagnetic isolation and recovery of rare tumor cells. Biomed Microdevices 2019;21:58. [PMID: 31227909 DOI: 10.1007/s10544-019-0418-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
51 Belotti Y, Lim CT. Microfluidics for Liquid Biopsies: Recent Advances, Current Challenges, and Future Directions. Anal Chem 2021;93:4727-38. [DOI: 10.1021/acs.analchem.1c00410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Myung JH, Hong S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip 2015;15:4500-11. [PMID: 26549749 DOI: 10.1039/c5lc00947b] [Cited by in Crossref: 70] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
53 Li YH, Zhou S, Jian X, Zhang X, Song YY. Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy. Mikrochim Acta 2021;188:361. [PMID: 34601637 DOI: 10.1007/s00604-021-05009-3] [Reference Citation Analysis]
54 Liu Y, Xu H, Li T, Wang W. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. Lab Chip 2021;21:994-1015. [PMID: 33710188 DOI: 10.1039/d0lc01101k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Batth IS, Mitra A, Manier S, Ghobrial IM, Menter D, Kopetz S, Li S. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Ann Oncol. 2017;28:468-477. [PMID: 27998963 DOI: 10.1093/annonc/mdw619] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
56 Waheed W, Sharaf OZ, Alazzam A, Abu-Nada E. Dielectrophoresis-field flow fractionation for separation of particles: A critical review. J Chromatogr A 2021;1637:461799. [PMID: 33385744 DOI: 10.1016/j.chroma.2020.461799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Jahangiri M, Ranjbar-torkamani M, Abadijoo H, Ghaderinia M, Ghafari H, Mamdouh A, Abdolahad M. Low frequency stimulation induces polarization-based capturing of normal, cancerous and white blood cells: a new separation method for circulating tumor cell enrichment or phenotypic cell sorting. Analyst 2020;145:7636-45. [DOI: 10.1039/d0an01033b] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Liu Y, Li T, Xu M, Zhang W, Xiong Y, Nie L, Wang Q, Li H, Wang W. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Lab Chip 2018;19:68-78. [PMID: 30516210 DOI: 10.1039/c8lc01048j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 6.3] [Reference Citation Analysis]
59 Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D, Khademhosseini A. Microfluidic‐Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small 2020;16:2000171. [DOI: 10.1002/smll.202000171] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 16.0] [Reference Citation Analysis]
60 Yao J, Chen J, Cao X, Dong H. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta 2019;196:546-55. [PMID: 30683404 DOI: 10.1016/j.talanta.2018.12.059] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
61 Li M, Anand RK. Cellular dielectrophoresis coupled with single-cell analysis. Anal Bioanal Chem 2018;410:2499-515. [DOI: 10.1007/s00216-018-0896-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
62 Ren Q, Liang C. Insulator-based dielectrophoretic antifouling of nanoporous membrane for high conductive water desalination. Desalination 2020;482:114410. [DOI: 10.1016/j.desal.2020.114410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Nordgård O, Tjensvoll K, Gilje B, Søreide K. Circulating tumour cells and DNA as liquid biopsies in gastrointestinal cancer. British Journal of Surgery 2018;105:e110-20. [DOI: 10.1002/bjs.10782] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
64 Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines (Basel) 2020;11:E832. [PMID: 32878225 DOI: 10.3390/mi11090832] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
65 Russo GI, Musso N, Romano A, Caruso G, Petralia S, Lanzanò L, Broggi G, Camarda M. The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis. Cancers (Basel) 2021;14:198. [PMID: 35008359 DOI: 10.3390/cancers14010198] [Reference Citation Analysis]
66 Hasan MR, Hassan N, Khan R, Kim Y, Iqbal SM. Classification of cancer cells using computational analysis of dynamic morphology. Computer Methods and Programs in Biomedicine 2018;156:105-12. [DOI: 10.1016/j.cmpb.2017.12.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
67 Sabuncu AC, Asmar AJ, Stacey MW, Beskok A. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Electrophoresis 2015;36:1499-506. [PMID: 25958778 DOI: 10.1002/elps.201500119] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
68 Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019;19:341. [PMID: 31866766 DOI: 10.1186/s12935-019-1067-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
69 Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Experimental and Molecular Pathology 2018;105:166-74. [DOI: 10.1016/j.yexmp.2018.07.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
70 B.i. MZA, Tirth V, Yousuff CM, Shukla NK, Islam S, Irshad K, Aarif KOM. Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle. BioChip J 2020;14:390-404. [DOI: 10.1007/s13206-020-4406-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Korayem MH, Shahali S, Rastegar Z. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles. Biomech Model Mechanobiol 2018;17:745-61. [DOI: 10.1007/s10237-017-0990-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
72 Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017;46:4245-80. [PMID: 28632258 DOI: 10.1039/c7cs00016b] [Cited by in Crossref: 82] [Cited by in F6Publishing: 30] [Article Influence: 20.5] [Reference Citation Analysis]
73 Adekanmbi EO, Giduthuri AT, Waymire S, Srivastava SK. Utilization of Dielectrophoresis for the Quantification of Rare Earth Elements Adsorbed on Cupriavidus necator. ACS Sustainable Chem Eng 2020;8:1353-61. [DOI: 10.1021/acssuschemeng.9b03878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
74 Pesch GR, Du F. A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 2021;42:134-52. [PMID: 32667696 DOI: 10.1002/elps.202000137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
75 Huang L, Tu L, Zeng X, Mi L, Li X, Wang W. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation. Micromachines (Basel) 2016;7:E141. [PMID: 30404313 DOI: 10.3390/mi7080141] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
76 Wang L, Balasubramanian P, Chen AP, Kummar S, Evrard YA, Kinders RJ. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin Oncol 2016;43:464-75. [PMID: 27663478 DOI: 10.1053/j.seminoncol.2016.06.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
77 Turcan I, Caras I, Schreiner TG, Tucureanu C, Salageanu A, Vasile V, Avram M, Tincu B, Olariu MA. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype. Biosensors (Basel) 2021;11:401. [PMID: 34677357 DOI: 10.3390/bios11100401] [Reference Citation Analysis]
78 Calero V, García-sánchez P, Ramos A, Morgan H. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. Journal of Chromatography A 2020;1623:461151. [DOI: 10.1016/j.chroma.2020.461151] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
79 McGrath JS, Honrado C, Moore JH, Adair SJ, Varhue WB, Salahi A, Farmehini V, Goudreau BJ, Nagdas S, Blais EM, Bauer TW, Swami NS. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal Chim Acta 2020;1101:90-8. [PMID: 32029124 DOI: 10.1016/j.aca.2019.12.033] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
80 Zhang J, Song Z, Liu Q, Song Y. Recent advances in dielectrophoresis‐based cell viability assessment. ELECTROPHORESIS 2020;41:917-32. [DOI: 10.1002/elps.201900340] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
81 Fukuyama S, Kumamoto S, Nagano S, Hitotsuya S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y. Detection of cancer cells in whole blood using a dynamic deformable microfilter and a nucleic acid aptamer. Talanta 2021;228:122239. [DOI: 10.1016/j.talanta.2021.122239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zhang L, Xu Z, Kang Y, Xue P. Three-dimensional microfluidic chip with twin-layer herringbone structure for high efficient tumor cell capture and release via antibody-conjugated magnetic microbeads. ELECTROPHORESIS 2018;39:1452-9. [DOI: 10.1002/elps.201800043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
83 Mackeyev Y, Mark C, Kumar N, Serda RE. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field. Acta Biomater 2017;53:619-30. [PMID: 28179157 DOI: 10.1016/j.actbio.2017.02.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
84 García-Diego FJ, Rubio-Chavarría M, Beltrán P, Espinós FJ. Characterization of Simple and Double Yeast Cells Using Dielectrophoretic Force Measurement. Sensors (Basel) 2019;19:E3813. [PMID: 31484453 DOI: 10.3390/s19173813] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
85 Duncan JL, Davalos RV. A review: Dielectrophoresis for characterizing and separating similar cell subpopulations based on bioelectric property changes due to disease progression and therapy assessment. Electrophoresis 2021;42:2423-44. [PMID: 34609740 DOI: 10.1002/elps.202100135] [Reference Citation Analysis]
86 Batth IS, Mitra A, Rood S, Kopetz S, Menter D, Li S. CTC analysis: an update on technological progress. Transl Res 2019;212:14-25. [PMID: 31348892 DOI: 10.1016/j.trsl.2019.07.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
87 Li T, Liu Y, Zhang W, Lin L, Zhang J, Xiong Y, Nie L, Liu X, Li H, Wang W. A rapid liquid biopsy of lung cancer by separation and detection of exfoliated tumor cells from bronchoalveolar lavage fluid with a dual-layer "PERFECT" filter system. Theranostics 2020;10:6517-29. [PMID: 32483467 DOI: 10.7150/thno.44274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
88 Kulasinghe A, Wu H, Punyadeera C, Warkiani ME. The Use of Microfluidic Technology for Cancer Applications and Liquid Biopsy. Micromachines (Basel) 2018;9:E397. [PMID: 30424330 DOI: 10.3390/mi9080397] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
89 Thiele JA, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu Rev Pathol 2017;12:419-47. [PMID: 28135562 DOI: 10.1146/annurev-pathol-052016-100256] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 10.4] [Reference Citation Analysis]
90 Adekanmbi EO, Srivastava SK. Dielectric characterization of bioparticles via electrokinetics: The past, present, and the future. Applied Physics Reviews 2019;6:041313. [DOI: 10.1063/1.5113709] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
91 Kumar RTK, Cherukuri K, Chadha R, Holderby V, Prasad S. Planar biochip system for combinatorial electrokinetics. BioChip J 2016;10:131-9. [DOI: 10.1007/s13206-016-0208-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
92 Zhang Y, Zhao Y, Chen D, Wang K, Wei Y, Xu Y, Huang C, Wang J, Chen J. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst 2019;144:1008-15. [PMID: 30648705 DOI: 10.1039/c8an02100g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
93 Velmanickam L, Jayasooriya V, Vemuri MS, Tida UR, Nawarathna D. Recent advances in dielectrophoresis toward biomarker detection: A summary of studies published between 2014 and 2021. Electrophoresis 2022;43:212-31. [PMID: 34453855 DOI: 10.1002/elps.202100194] [Reference Citation Analysis]
94 Korayem MH, Shahali S, Rastegar Z, Far SK. Path planning of the viscoelastic micro biological particle to minimize path length and particle's deformation using genetic algorithm. Phys Eng Sci Med 2020;43:903-14. [PMID: 32607782 DOI: 10.1007/s13246-020-00887-y] [Reference Citation Analysis]
95 Karthick S, Pradeep PN, Kanchana P, Sen AK. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Lab Chip 2018;18:3802-13. [DOI: 10.1039/c8lc00921j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
96 Lorenz M, Malangré D, Du F, Baune M, Thöming J, Pesch GR. High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials. Anal Bioanal Chem 2020;412:3903-14. [PMID: 32198531 DOI: 10.1007/s00216-020-02557-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
97 Pantel K, Alix-panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol 2019;16:409-24. [DOI: 10.1038/s41571-019-0187-3] [Cited by in Crossref: 271] [Cited by in F6Publishing: 263] [Article Influence: 90.3] [Reference Citation Analysis]
98 Wang C, Ma Y, Pei Z, Song F, Zhong J, Wang Y, Yan X, Dai P, Jiang Y, Qiu J, Shi M, Wu X. Sheathless acoustic based flow cell sorter for enrichment of rare cells. Cytometry A 2021. [PMID: 34806837 DOI: 10.1002/cyto.a.24521] [Reference Citation Analysis]
99 Mansoorifar A, Koklu A, Ma S, Raj GV, Beskok A. Electrical Impedance Measurements of Biological Cells in Response to External Stimuli. Anal Chem 2018;90:4320-7. [PMID: 29402081 DOI: 10.1021/acs.analchem.7b05392] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
100 Low W, Kadri N. Computational Analysis of Enhanced Circulating Tumour Cell (CTC) Separation in a Microfluidic System with an Integrated Dielectrophoretic-Magnetophorectic (DEP-MAP) Technique. Chemosensors 2016;4:14. [DOI: 10.3390/chemosensors4030014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. Micromachines 2022;13:152. [DOI: 10.3390/mi13020152] [Reference Citation Analysis]
102 Xue P, Zhang L, Guo J, Xu Z, Kang Y. Isolation and retrieval of circulating tumor cells on a microchip with double parallel layers of herringbone structure. Microfluid Nanofluid 2016;20. [DOI: 10.1007/s10404-016-1834-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
103 Hawkins BG, Lai N, Clague DS. High-Sensitivity in Dielectrophoresis Separations. Micromachines (Basel) 2020;11:E391. [PMID: 32283618 DOI: 10.3390/mi11040391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
104 Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, Mo J, Shi S. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection. Front Pharmacol 2017;8:35. [PMID: 28203204 DOI: 10.3389/fphar.2017.00035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
105 Tada S, Nakanishi A, Eguchi M, Ochi K, Baba M, Tsukamoto A. Enhancement of continuous-flow separation of viable/nonviable yeast cells using a nonuniform alternating current electric field with complex spatial distribution. Biomicrofluidics 2016;10:034110. [PMID: 27279934 DOI: 10.1063/1.4950999] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
106 Puttaswamy SV, Bhalla N, Kelsey C, Lubarsky G, Lee C, McLaughlin J. Independent and grouped 3D cell rotation in a microfluidic device for bioimaging applications. Biosens Bioelectron 2020;170:112661. [PMID: 33032194 DOI: 10.1016/j.bios.2020.112661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Kwak TJ, Jung H, Allen BD, Demirel MC, Chang W. Dielectrophoretic separation of randomly shaped protein particles. Separation and Purification Technology 2021;262:118280. [DOI: 10.1016/j.seppur.2020.118280] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
108 Adekanmbi EO, Giduthuri AT, Srivastava SK. Dielectric Characterization and Separation Optimization of Infiltrating Ductal Adenocarcinoma via Insulator-Dielectrophoresis. Micromachines (Basel) 2020;11:E340. [PMID: 32218322 DOI: 10.3390/mi11040340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
109 Yildizhan Y, Erdem N, Islam M, Martinez-Duarte R, Elitas M. Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes. Sensors (Basel) 2017;17:E2691. [PMID: 29165346 DOI: 10.3390/s17112691] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 7.4] [Reference Citation Analysis]
110 Kelp G, Li J, Lu J, DiNapoli N, Delgado R, Liu C, Fan D, Dutta-Gupta S, Shvets G. Infrared spectroscopy of live cells from a flowing solution using electrically-biased plasmonic metasurfaces. Lab Chip 2020;20:2136-53. [PMID: 32406430 DOI: 10.1039/c9lc01054h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Zheng Y, Li Q, Hu W, Liao J, Zheng G, Su M. Whole slide imaging of circulating tumor cells captured on a capillary microchannel device. Lab Chip 2019;19:3796-803. [PMID: 31621763 DOI: 10.1039/c9lc00412b] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
112 Kumamoto S, Nakatake K, Fukuyama S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y. A dynamically deformable microfilter for selective separation of specific substances in microfluidics. Biomicrofluidics 2020;14:064113. [PMID: 33425088 DOI: 10.1063/5.0025927] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
113 Niciński K, Krajczewski J, Kudelski A, Witkowska E, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Detection of circulating tumor cells in blood by shell-isolated nanoparticle - enhanced Raman spectroscopy (SHINERS) in microfluidic device. Sci Rep 2019;9:9267. [PMID: 31239487 DOI: 10.1038/s41598-019-45629-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
114 Ye B, Gao Q, Zeng Z, Stary CM, Jian Z, Xiong X, Gu L. Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research. Anal Cell Pathol (Amst) 2016;2016:9369240. [PMID: 27313981 DOI: 10.1155/2016/9369240] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
115 Romero-Soto FO, Polanco-Oliva MI, Gallo-Villanueva RC, Martinez-Chapa SO, Perez-Gonzalez VH. A survey of electrokinetically-driven microfluidics for cancer cells manipulation. Electrophoresis 2021;42:605-25. [PMID: 33188536 DOI: 10.1002/elps.202000221] [Reference Citation Analysis]
116 Aghaamoo M, Aghilinejad A, Chen X, Xu J. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. ELECTROPHORESIS 2019;40:1486-93. [DOI: 10.1002/elps.201800459] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
117 Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale 2021;13:4330-58. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
118 Soltanian-Zadeh S, Kikkeri K, Shajahan-Haq AN, Strobl J, Clarke R, Agah M. Breast cancer cell obatoclax response characterization using passivated-electrode insulator-based dielectrophoresis. Electrophoresis 2017;38:1988-95. [PMID: 28608427 DOI: 10.1002/elps.201600447] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
119 Patil P, Madhuprasad M, Kumeria T, Losic D, Kurkuri M. Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Adv 2015;5:89745-62. [DOI: 10.1039/c5ra16489c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 2] [Article Influence: 4.1] [Reference Citation Analysis]
120 Huang X, Torres-Castro K, Varhue W, Salahi A, Rasin A, Honrado C, Brown A, Guler J, Swami NS. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection. Lab Chip 2021;21:835-43. [PMID: 33532812 DOI: 10.1039/d0lc01211d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
121 Yao J, Zhu G, Zhao T, Takei M. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells-A review. Electrophoresis 2018. [PMID: 30378130 DOI: 10.1002/elps.201800440] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
122 Ouyang J, Chen M, Bao W, Zhang Q, Wang K, Xia X. Morphology Controlled Poly(aminophenylboronic acid) Nanostructures as Smart Substrates for Enhanced Capture and Release of Circulating Tumor Cells. Adv Funct Mater 2015;25:6122-30. [DOI: 10.1002/adfm.201502420] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
123 Zhu S, Jiang F, Han Y, Xiang N, Ni Z. Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 2020;145:7103-24. [DOI: 10.1039/d0an01148g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
124 Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. ELECTROPHORESIS. [DOI: 10.1002/elps.201900048] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
125 Aghilinejad A, Aghaamoo M, Chen X. On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation. Biomicrofluidics 2019;13:034112. [PMID: 31186821 DOI: 10.1063/1.5092718] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
126 Korayem MH, Heidary K, Rastegar Z. The head and neck cancer (HN-5) cell line properties extraction by AFM. J Biol Eng 2020;14:10. [PMID: 32206087 DOI: 10.1186/s13036-020-00233-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
127 Matbaechi Ettehad H, Wenger C. Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics. Micromachines (Basel) 2021;12:270. [PMID: 33800809 DOI: 10.3390/mi12030270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Banovetz JT, Li M, Pagariya D, Kim S, Ganapathysubramanian B, Anand RK. Defining Cell Cluster Size by Dielectrophoretic Capture at an Array of Wireless Electrodes of Several Distinct Lengths. Micromachines (Basel) 2019;10:E271. [PMID: 31018537 DOI: 10.3390/mi10040271] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
129 Hyler AR, Hong D, Davalos RV, Swami NS, Schmelz EM. A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency. Electrophoresis 2021;42:1366-77. [PMID: 33687759 DOI: 10.1002/elps.202000324] [Reference Citation Analysis]
130 Sasanpour M, Azadbakht A, Mollaei P, Reihani SNS. Proper measurement of pure dielectrophoresis force acting on a RBC using optical tweezers. Biomed Opt Express 2019;10:5639-49. [PMID: 31799036 DOI: 10.1364/BOE.10.005639] [Reference Citation Analysis]
131 Pesch GR, Lorenz M, Sachdev S, Salameh S, Du F, Baune M, Boukany PE, Thöming J. Bridging the scales in high-throughput dielectrophoretic (bio-)particle separation in porous media. Sci Rep 2018;8:10480. [PMID: 29993026 DOI: 10.1038/s41598-018-28735-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]