BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mazur-Marzec H, Cegłowska M, Konkel R, Pyrć K. Antiviral Cyanometabolites-A Review. Biomolecules 2021;11:474. [PMID: 33810129 DOI: 10.3390/biom11030474] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Srivastava R, Prajapati R, Kanda T, Yadav S, Singh N, Yadav S, Mishra R, Atri N. Phycochemistry and bioactivity of cyanobacterial secondary metabolites. Mol Biol Rep 2022. [PMID: 36161579 DOI: 10.1007/s11033-022-07911-2] [Reference Citation Analysis]
2 Maier I. Engineering recombinantly expressed lectin-based antiviral agents. Front Cell Infect Microbiol 2022;12:990875. [DOI: 10.3389/fcimb.2022.990875] [Reference Citation Analysis]
3 Besednova NN, Andryukov BG, Zaporozhets TS, Ermakova SP, Kuznetsova TA, Kryzhanovsky SP, Shchelkanov MY. Enveloped Viruses: Pathogenetic Targets for Cyanobacterial Lectins. A&Ch 2022;67:39-60. [DOI: 10.37489/0235-2990-2022-67-5-6-39-60] [Reference Citation Analysis]
4 Singh L. Sub-Aerial Cyanobacteria: A Survey of Research with Antimicrobial Properties for Pharmaceutical Approaches. Bacterial Biofilms [Working Title] 2022. [DOI: 10.5772/intechopen.102696] [Reference Citation Analysis]
5 Duvauchelle V, Meffre P, Benfodda Z. Recent contribution of medicinally active 2-aminothiophenes: A privileged scaffold for drug discovery. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114502] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Krohn I, Menanteau‐ledouble S, Hageskal G, Astafyeva Y, Jouannais P, Nielsen JL, Pizzol M, Wentzel A, Streit WR. Health benefits of microalgae and their microbiomes. Microbial Biotechnology. [DOI: 10.1111/1751-7915.14082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Sodano F, Gazzano E, Fruttero R, Lazzarato L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022;27:2337. [PMID: 35408735 DOI: 10.3390/molecules27072337] [Reference Citation Analysis]
8 Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022;11:339. [DOI: 10.3390/cells11030339] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2021;146:112507. [PMID: 34891122 DOI: 10.1016/j.biopha.2021.112507] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
10 Naidoo D, Kar P, Roy A, Mutanda T, Bwapwa J, Sen A, Anandraj A. Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein-Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules 2021;26:5114. [PMID: 34500548 DOI: 10.3390/molecules26175114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Pilkaitytė R, Overlingė D, Gasiūnaitė ZR, Mazur-marzec H. Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). Water 2021;13:1760. [DOI: 10.3390/w13131760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Maier I, Schiestl RH, Kontaxis G. Cyanovirin-N Binds Viral Envelope Proteins at the Low-Affinity Carbohydrate Binding Site without Direct Virus Neutralization Ability. Molecules 2021;26:3621. [PMID: 34199200 DOI: 10.3390/molecules26123621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]