BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020;10:E1225. [PMID: 32842488 DOI: 10.3390/biom10091225] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Qiang M, Hao J, Liu H, Yin J, Zhang H, Yang J, Meng H, Chen Y, Gao Y. Er-xian ameliorates myocardial ischemia-reperfusion injury in rats through RISK pathway involving estrogen receptors. Chin J Nat Med 2022;20:902-13. [PMID: 36549804 DOI: 10.1016/S1875-5364(22)60213-9] [Reference Citation Analysis]
2 Himelman E, Nouet J, Lillo MA, Chong A, Zhou D, Wehrens XHT, Rodney GG, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. A microtubule-connexin-43 regulatory link suppresses arrhythmias and cardiac fibrosis in Duchenne muscular dystrophy mice. Am J Physiol Heart Circ Physiol 2022;323:H983-95. [PMID: 36206047 DOI: 10.1152/ajpheart.00179.2022] [Reference Citation Analysis]
3 Falck AT, Lund BA, Johansen D, Lund T, Ytrehus K. The Ambivalence of Connexin43 Gap Peptides in Cardioprotection of the Isolated Heart against Ischemic Injury. Int J Mol Sci 2022;23:10197. [PMID: 36077595 DOI: 10.3390/ijms231710197] [Reference Citation Analysis]
4 Xu H, Wang M, Li Y, Shi M, Wang Z, Cao C, Hong Y, Hu B, Zhu H, Zhao Z, Chu X, Zhu F, Deng X, Wu J, Zhao F, Guo J, Wang Y, Pei G, Zhu F, Wang X, Yang J, Yao Y, Zeng R. Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis. Cell Death Dis 2022;13:511. [PMID: 35641484 DOI: 10.1038/s41419-022-04910-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Himelman E, Nouet J, Lillo MA, Chong A, Wehrens XH, Rodney GG, Xie L, Shirokova N, Contreras JE, Fraidenraich D. Microtubule-Connexin-43 regulation suppresses arrhythmias and fibrosis in Duchenne muscular dystrophy mice.. [DOI: 10.1101/2022.03.29.486276] [Reference Citation Analysis]
6 Shimura D, Shaw RM. GJA1-20k and Mitochondrial Dynamics. Front Physiol 2022;13:867358. [DOI: 10.3389/fphys.2022.867358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Su XL, Wang SH, Komal S, Cui LG, Ni RC, Zhang LR, Han SN. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway. Acta Pharmacol Sin 2022. [PMID: 35132192 DOI: 10.1038/s41401-021-00845-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sankaramoorthy A, Roy S. High Glucose-Induced Apoptosis Is Linked to Mitochondrial Connexin 43 Level in RRECs: Implications for Diabetic Retinopathy. Cells 2021;10:3102. [PMID: 34831325 DOI: 10.3390/cells10113102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Song X, Yue Z, Nie L, Zhao P, Zhu K, Wang Q. Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. Evid Based Complement Alternat Med 2021;2021:5103626. [PMID: 34745287 DOI: 10.1155/2021/5103626] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
10 Madonna R, Moscato S, Polizzi E, Pieragostino D, Cufaro MC, Del Boccio P, Bianchi F, De Caterina R, Mattii L. Connexin 43 and Connexin 26 Involvement in the Ponatinib-Induced Cardiomyopathy: Sex-Related Differences in a Murine Model. Int J Mol Sci 2021;22:5815. [PMID: 34071707 DOI: 10.3390/ijms22115815] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
11 Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021;280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021;8:52. [PMID: 34063001 DOI: 10.3390/jcdd8050052] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
13 Van Campenhout R, Gomes AR, De Groof TWM, Muyldermans S, Devoogdt N, Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int J Mol Sci 2021;22:3503. [PMID: 33800706 DOI: 10.3390/ijms22073503] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
14 Aasen T. Connexins, Innexins, and Pannexins: From Biology to Clinical Targets. Biomolecules 2021;11:155. [PMID: 33504027 DOI: 10.3390/biom11020155] [Reference Citation Analysis]
15 Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020;22:E260. [PMID: 33383853 DOI: 10.3390/ijms22010260] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]