BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C. Logical Modeling and Dynamical Analysis of Cellular Networks. Front Genet 2016;7:94. [PMID: 27303434 DOI: 10.3389/fgene.2016.00094] [Cited by in Crossref: 115] [Cited by in F6Publishing: 80] [Article Influence: 19.2] [Reference Citation Analysis]
Number Citing Articles
1 Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020;18:e3000917. [PMID: 33180788 DOI: 10.1371/journal.pbio.3000917] [Reference Citation Analysis]
2 Hansberg W. A critical analysis on the conception of "Pre-existent gene expression programs" for cell differentiation and development. Differentiation 2022;125:1-8. [DOI: 10.1016/j.diff.2022.02.005] [Reference Citation Analysis]
3 Guttula PK, Monteiro PT, Gupta MK. A Boolean Logical model for Reprogramming of Testes-derived male Germline Stem Cells into Germline pluripotent stem cells. Computer Methods and Programs in Biomedicine 2020;192:105473. [DOI: 10.1016/j.cmpb.2020.105473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ramírez C, Mendoza L, Valencia A. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2018;34:1174-82. [DOI: 10.1093/bioinformatics/btx736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
5 Wacker BW, Velcsov MT, Rogers JA, Holme P. Boolean network topologies and the determinative power of nodes. Journal of Complex Networks 2020;8:cnaa003. [DOI: 10.1093/comnet/cnaa003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Niarakis A, Helikar T. A practical guide to mechanistic systems modeling in biology using a logic-based approach. Brief Bioinform 2021;22:bbaa236. [PMID: 33064138 DOI: 10.1093/bib/bbaa236] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021;10:2863. [PMID: 34831086 DOI: 10.3390/cells10112863] [Reference Citation Analysis]
8 Gupta S, Silveira DA, Mombach JCM. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation. PLoS One 2018;13:e0200768. [PMID: 30024932 DOI: 10.1371/journal.pone.0200768] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
9 Rajapakse VN, Herrada S, Lavi O. Phenotype stability under dynamic brain-tumor environment stimuli maps glioblastoma progression in patients. Sci Adv 2020;6:eaaz4125. [PMID: 32832595 DOI: 10.1126/sciadv.aaz4125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Booth CS, Song C, Howell ME, Rasquinha A, Saska A, Helikar R, Sikich SM, Couch BA, van Dijk K, Roston RL, Helikar T. Teaching Metabolism in Upper-Division Undergraduate Biochemistry Courses using Online Computational Systems and Dynamical Models Improves Student Performance. CBE Life Sci Educ 2021;20:ar13. [PMID: 33635127 DOI: 10.1187/cbe.20-05-0105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos T, Van Daele D, De Raedt L, Kühl M, Kestler HA. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol 2019;2:21. [PMID: 30675519 DOI: 10.1038/s42003-018-0268-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
12 Calzone L, Barillot E, Zinovyev A. Logical versus kinetic modeling of biological networks: applications in cancer research. Current Opinion in Chemical Engineering 2018;21:22-31. [DOI: 10.1016/j.coche.2018.02.005] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
13 Saidak Z, Giacobbi AS, Morisse MC, Mammeri Y, Galmiche A. [Mathematical modeling: an essential tool for the study of therapeutic targeting in solid tumors]. Med Sci (Paris) 2017;33:1055-62. [PMID: 29261493 DOI: 10.1051/medsci/20173312012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
14 Richard A. Positive and negative cycles in Boolean networks. Journal of Theoretical Biology 2019;463:67-76. [DOI: 10.1016/j.jtbi.2018.11.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
15 Turner A, Tyrrell A, Trefzer M, Lones M. Evolutionary acquisition of complex traits in artificial epigenetic networks. Biosystems 2019;176:17-26. [PMID: 30557598 DOI: 10.1016/j.biosystems.2018.12.001] [Reference Citation Analysis]
16 Dry JR, Yang M, Saez-Rodriguez J. Looking beyond the cancer cell for effective drug combinations. Genome Med 2016;8:125. [PMID: 27887656 DOI: 10.1186/s13073-016-0379-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
17 Golubyatnikov VP, Minushkina LS. On Uniqueness of a Cycle in One Circular Gene Network Model. Sib Math J 2022;63:79-86. [DOI: 10.1134/s0037446622010062] [Reference Citation Analysis]
18 Chen L, Kulasiri D, Samarasinghe S. A Novel Data-Driven Boolean Model for Genetic Regulatory Networks. Front Physiol 2018;9:1328. [PMID: 30319440 DOI: 10.3389/fphys.2018.01328] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Miagoux Q, Singh V, de Mézquita D, Chaudru V, Elati M, Petit-Teixeira E, Niarakis A. Inference of an Integrative, Executable Network for Rheumatoid Arthritis Combining Data-Driven Machine Learning Approaches and a State-of-the-Art Mechanistic Disease Map. J Pers Med 2021;11:785. [PMID: 34442429 DOI: 10.3390/jpm11080785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Khalilimeybodi A, Paap AM, Christiansen SLM, Saucerman JJ. Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Comput Biol 2020;16:e1008490. [PMID: 33338038 DOI: 10.1371/journal.pcbi.1008490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lemos A, Lynce I, Monteiro PT. Repairing Boolean logical models from time-series data using Answer Set Programming. Algorithms Mol Biol 2019;14:9. [PMID: 30962813 DOI: 10.1186/s13015-019-0145-8] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Welkenhuysen N, Schnitzer B, Österberg L, Cvijovic M. Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways. Front Physiol 2018;9:1964. [PMID: 30719010 DOI: 10.3389/fphys.2018.01964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Barberis M, Todd RG, van der Zee L. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res 2017;17:fow103. [PMID: 27993914 DOI: 10.1093/femsyr/fow103] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
24 Silveira DA, Mombach JCM. Dynamics of the feedback loops required for the phenotypic stabilization in the epithelial-mesenchymal transition. FEBS J 2020;287:578-88. [PMID: 31529614 DOI: 10.1111/febs.15062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Cacace E, Collombet S, Thieffry D. Logical modeling of cell fate specification—Application to T cell commitment. Gene Regulatory Networks. Elsevier; 2020. pp. 205-38. [DOI: 10.1016/bs.ctdb.2020.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Zobolas J, Monteiro PT, Kuiper M, Flobak Å. Boolean function metrics can assist modelers to check and choose logical rules. Journal of Theoretical Biology 2022. [DOI: 10.1016/j.jtbi.2022.111025] [Reference Citation Analysis]
27 Selvaggio G, Chaouiya C, Janody F. In Silico Logical Modelling to Uncover Cooperative Interactions in Cancer. Int J Mol Sci 2021;22:4897. [PMID: 34063110 DOI: 10.3390/ijms22094897] [Reference Citation Analysis]
28 Sherekar S, Viswanathan GA. Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics. Comp Sys Onco 2021;1. [DOI: 10.1002/cso2.1017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Minucci SB, Heise RL, Reynolds AM. Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries. Front Appl Math Stat 2020;6:36. [DOI: 10.3389/fams.2020.00036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
30 Sedghamiz H, Morris M, Craddock TJA, Whitley D, Broderick G. High-fidelity discrete modeling of the HPA axis: a study of regulatory plasticity in biology. BMC Syst Biol 2018;12:76. [PMID: 30016990 DOI: 10.1186/s12918-018-0599-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
31 Trairatphisan P, de Souza TM, Kleinjans J, Jennen D, Saez-Rodriguez J. Contextualization of causal regulatory networks from toxicogenomics data applied to drug-induced liver injury. Toxicol Lett 2021;350:40-51. [PMID: 34229068 DOI: 10.1016/j.toxlet.2021.06.020] [Reference Citation Analysis]
32 Thieffry D, Kaufman M. Prologue to the special issue of JTB dedicated to the memory of René Thomas (1928-2017): A journey through biological circuits, logical puzzles and complex dynamics. J Theor Biol 2019;474:42-7. [PMID: 31028774 DOI: 10.1016/j.jtbi.2019.04.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Gupta S, Silveira DA, Mombach JCM. ATM /miR‐34a‐5p axis regulates a p21‐dependent senescence‐apoptosis switch in non‐small cell lung cancer: a Boolean model of G1/S checkpoint regulation. FEBS Lett 2019;594:227-39. [DOI: 10.1002/1873-3468.13615] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
34 Rossato VV, Silveira DA, Gupta S, Mombach JCM. Towards the contribution of the p38MAPK pathway to the dual role of TGFβ in cancer: A boolean model approach. Comput Biol Med 2019;104:235-40. [PMID: 30530226 DOI: 10.1016/j.compbiomed.2018.11.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
35 Dunn SJ, Li MA, Carbognin E, Smith A, Martello G. A common molecular logic determines embryonic stem cell self-renewal and reprogramming. EMBO J 2019;38:e100003. [PMID: 30482756 DOI: 10.15252/embj.2018100003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
36 Chaves M, Tournier L. Analysis Tools for Interconnected Boolean Networks With Biological Applications. Front Physiol 2018;9:586. [PMID: 29896108 DOI: 10.3389/fphys.2018.00586] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
37 Marku M, Verstraete N, Raynal F, Madrid-Mencía M, Domagala M, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies. Cancers (Basel) 2020;12:E3664. [PMID: 33297362 DOI: 10.3390/cancers12123664] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Perez-Buendia JR, Cortes-Poza Y, Padilla-Longoria P. Epigenetic forest and flower morphogenesis. Comput Biol Chem 2022;98:107667. [PMID: 35339093 DOI: 10.1016/j.compbiolchem.2022.107667] [Reference Citation Analysis]
39 Traynard P, Tobalina L, Eduati F, Calzone L, Saez-Rodriguez J. Logic Modeling in Quantitative Systems Pharmacology. CPT Pharmacometrics Syst Pharmacol 2017;6:499-511. [PMID: 28681552 DOI: 10.1002/psp4.12225] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
40 Gomez JD, Mayner WGP, Beheler-Amass M, Tononi G, Albantakis L. Computing Integrated Information (Φ) in Discrete Dynamical Systems with Multi-Valued Elements. Entropy (Basel) 2020;23:E6. [PMID: 33375068 DOI: 10.3390/e23010006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Mendes ND, Henriques R, Remy E, Carneiro J, Monteiro PT, Chaouiya C. Estimating Attractor Reachability in Asynchronous Logical Models. Front Physiol 2018;9:1161. [PMID: 30245634 DOI: 10.3389/fphys.2018.01161] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
42 Deritei D, Rozum J, Ravasz Regan E, Albert R. A feedback loop of conditionally stable circuits drives the cell cycle from checkpoint to checkpoint. Sci Rep 2019;9:16430. [PMID: 31712566 DOI: 10.1038/s41598-019-52725-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Azer K, Kaddi CD, Barrett JS, Bai JPF, McQuade ST, Merrill NJ, Piccoli B, Neves-Zaph S, Marchetti L, Lombardo R, Parolo S, Immanuel SRC, Baliga NS. History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Front Physiol 2021;12:637999. [PMID: 33841175 DOI: 10.3389/fphys.2021.637999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Videla S, Saez-Rodriguez J, Guziolowski C, Siegel A. caspo: a toolbox for automated reasoning on the response of logical signaling networks families. Bioinformatics 2017;33:947-50. [PMID: 28065903 DOI: 10.1093/bioinformatics/btw738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
45 Clark CAC, Helikar T, Dauer J. Simulating a Computational Biological Model, Rather Than Reading, Elicits Changes in Brain Activity during Biological Reasoning. CBE Life Sci Educ 2020;19:ar45. [PMID: 32870080 DOI: 10.1187/cbe.19-11-0237] [Reference Citation Analysis]
46 Naldi A, Hernandez C, Levy N, Stoll G, Monteiro PT, Chaouiya C, Helikar T, Zinovyev A, Calzone L, Cohen-Boulakia S, Thieffry D, Paulevé L. The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks. Front Physiol 2018;9:680. [PMID: 29971009 DOI: 10.3389/fphys.2018.00680] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
47 Chaves M, de Jong H. Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits. Methods Mol Biol 2021;2229:1-40. [PMID: 33405215 DOI: 10.1007/978-1-0716-1032-9_1] [Reference Citation Analysis]
48 Silveira DA, Gupta S, Mombach JCM. Systems biology approach suggests new miRNAs as phenotypic stability factors in the epithelial-mesenchymal transition. J R Soc Interface 2020;17:20200693. [PMID: 33050781 DOI: 10.1098/rsif.2020.0693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Romers J, Thieme S, Münzner U, Krantz M. A scalable method for parameter-free simulation and validation of mechanistic cellular signal transduction network models. NPJ Syst Biol Appl 2020;6:2. [PMID: 31934349 DOI: 10.1038/s41540-019-0120-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Naldi A. BioLQM: A Java Toolkit for the Manipulation and Conversion of Logical Qualitative Models of Biological Networks. Front Physiol 2018;9:1605. [PMID: 30510517 DOI: 10.3389/fphys.2018.01605] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
51 Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 2020;36:4473-82. [PMID: 32403123 DOI: 10.1093/bioinformatics/btaa484] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
52 Issler MVC, Mombach JCM. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One 2017;12:e0185794. [PMID: 28968438 DOI: 10.1371/journal.pone.0185794] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
53 Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021;22:2366. [PMID: 33673423 DOI: 10.3390/ijms22052366] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Chaves M, Figueiredo D, Martins MA. Boolean dynamics revisited through feedback interconnections. Nat Comput 2020;19:29-49. [DOI: 10.1007/s11047-018-9716-8] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Silveira DA, Gupta S, Mombach JCM. p53/E2F1/miR-25 axis regulates apoptosis induction in glioblastoma cells: a qualitative model. J Phys Complex 2020;1:035001. [DOI: 10.1088/2632-072x/aba3bb] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Aracena J, Gadouleau M, Richard A, Salinas L. Fixing monotone Boolean networks asynchronously. Information and Computation 2020;274:104540. [DOI: 10.1016/j.ic.2020.104540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Lages J, Shepelyansky DL, Zinovyev A. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks. PLoS One 2018;13:e0190812. [PMID: 29370181 DOI: 10.1371/journal.pone.0190812] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
58 Varela PL, Ramos CV, Monteiro PT, Chaouiya C. EpiLog: A software for the logical modelling of epithelial dynamics. F1000Res 2018;7:1145. [PMID: 30363398 DOI: 10.12688/f1000research.15613.2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
59 Béal J, Montagud A, Traynard P, Barillot E, Calzone L. Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients. Front Physiol 2018;9:1965. [PMID: 30733688 DOI: 10.3389/fphys.2018.01965] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
60 Palma A, Jarrah AS, Tieri P, Cesareni G, Castiglione F. Gene Regulatory Network Modeling of Macrophage Differentiation Corroborates the Continuum Hypothesis of Polarization States. Front Physiol 2018;9:1659. [PMID: 30546316 DOI: 10.3389/fphys.2018.01659] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
61 Kondratova M, Barillot E, Zinovyev A, Calzone L. Modelling of Immune Checkpoint Network Explains Synergistic Effects of Combined Immune Checkpoint Inhibitor Therapy and the Impact of Cytokines in Patient Response. Cancers (Basel) 2020;12:E3600. [PMID: 33276543 DOI: 10.3390/cancers12123600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M, Van Steen K, Schmidt HH. Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice. Network and Systems Medicine 2020;3:36-56. [DOI: 10.1089/nsm.2020.0002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
63 Pentzien T, Puniya BL, Helikar T, Matache MT. Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes. Front Physiol 2018;9:1185. [PMID: 30233390 DOI: 10.3389/fphys.2018.01185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
64 Liew CW, Phuong T, Jones CB, Evans S, Hoot J, Weedling K, Ingram D, Nganga S, Kurt RA. A computational approach to unraveling TLR signaling in murine mammary carcinoma. Comput Biol Med 2018;93:56-65. [PMID: 29277001 DOI: 10.1016/j.compbiomed.2017.12.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
65 Beneš N, Brim L, Kadlecaj J, Pastva S, Šafránek D. Exploring attractor bifurcations in Boolean networks. BMC Bioinformatics 2022;23:173. [PMID: 35546394 DOI: 10.1186/s12859-022-04708-9] [Reference Citation Analysis]
66 Campbell C, Albert R. Edgetic perturbations to eliminate fixed-point attractors in Boolean regulatory networks. Chaos 2019;29:023130. [PMID: 30823730 DOI: 10.1063/1.5083060] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
67 Thobe K, Kuznia C, Sers C, Siebert H. Evaluating Uncertainty in Signaling Networks Using Logical Modeling. Front Physiol 2018;9:1335. [PMID: 30364151 DOI: 10.3389/fphys.2018.01335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
68 Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, Kim HJ, Han SH, Seo J, Choi M, Lee DY, Byun MS, Yi D, Cho KH, Mook-Jung I. A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat Commun 2021;12:280. [PMID: 33436582 DOI: 10.1038/s41467-020-20440-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
69 Stoll G, Naldi A, Noël V, Viara E, Barillot E, Kroemer G, Thieffry D, Calzone L. UPMaBoSS: A Novel Framework for Dynamic Cell Population Modeling. Front Mol Biosci 2022;9:800152. [DOI: 10.3389/fmolb.2022.800152] [Reference Citation Analysis]
70 Gupta S, Hashimoto RF. Dynamical Analysis of a Boolean Network Model of the Oncogene Role of lncRNA ANRIL and lncRNA UFC1 in Non-Small Cell Lung Cancer. Biomolecules 2022;12:420. [DOI: 10.3390/biom12030420] [Reference Citation Analysis]
71 Liu L, Bockmayr A. Formalizing Metabolic-Regulatory Networks by Hybrid Automata. Acta Biotheor 2020;68:73-85. [PMID: 31342219 DOI: 10.1007/s10441-019-09354-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
72 G T Zañudo J, Steinway SN, Albert R. Discrete dynamic network modeling of oncogenic signaling: Mechanistic insights for personalized treatment of cancer. Curr Opin Syst Biol 2018;9:1-10. [PMID: 32954058 DOI: 10.1016/j.coisb.2018.02.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
73 Fauré A, Kaji S. A circuit-preserving mapping from multilevel to Boolean dynamics. Journal of Theoretical Biology 2018;440:71-9. [DOI: 10.1016/j.jtbi.2017.12.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
74 Wertheim KY, Puniy BL, La Fleur A, Shah AR, Barberis M, Helikar T. A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Comput Biol 2021;17:e1009209. [PMID: 34343169 DOI: 10.1371/journal.pcbi.1009209] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Traynard P, Fauré A, Fages F, Thieffry D. Logical model specification aided by model-checking techniques: application to the mammalian cell cycle regulation. Bioinformatics 2016;32:i772-80. [PMID: 27587700 DOI: 10.1093/bioinformatics/btw457] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
76 Rothenberg EV. Causal Gene Regulatory Network Modeling and Genomics: Second-Generation Challenges. J Comput Biol 2019;26:703-18. [PMID: 31063008 DOI: 10.1089/cmb.2019.0098] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
77 Gupta S, Silveira DA, Barbé-Tuana FM, Mombach JCM. Integrative data modeling from lung and lymphatic cancer predicts functional roles for miR-34a and miR-16 in cell fate regulation. Sci Rep 2020;10:2511. [PMID: 32054948 DOI: 10.1038/s41598-020-59339-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Naldi A, Hernandez C, Abou-Jaoudé W, Monteiro PT, Chaouiya C, Thieffry D. Logical Modeling and Analysis of Cellular Regulatory Networks With GINsim 3.0. Front Physiol 2018;9:646. [PMID: 29971008 DOI: 10.3389/fphys.2018.00646] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
79 Selvaggio G, Cristellon S, Marchetti L. A Novel Hybrid Logic-ODE Modeling Approach to Overcome Knowledge Gaps. Front Mol Biosci 2021;8:760077. [PMID: 34988115 DOI: 10.3389/fmolb.2021.760077] [Reference Citation Analysis]
80 Gupta S, Silveira DA, Mombach JCM. Towards DNA-damage induced autophagy: A Boolean model of p53-induced cell fate mechanisms. DNA Repair (Amst) 2020;96:102971. [PMID: 32987354 DOI: 10.1016/j.dnarep.2020.102971] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
81 Lesage R, Kerkhofs J, Geris L. Computational Modeling and Reverse Engineering to Reveal Dominant Regulatory Interactions Controlling Osteochondral Differentiation: Potential for Regenerative Medicine. Front Bioeng Biotechnol 2018;6:165. [PMID: 30483498 DOI: 10.3389/fbioe.2018.00165] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
82 Dauer JT, Bergan-roller HE, King GP, Kjose M, Galt NJ, Helikar T. Changes in students’ mental models from computational modeling of gene regulatory networks. IJ STEM Ed 2019;6. [DOI: 10.1186/s40594-019-0193-0] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
83 Hou W, Ruan P, Ching WK, Akutsu T. On the number of driver nodes for controlling a Boolean network when the targets are restricted to attractors. J Theor Biol 2019;463:1-11. [PMID: 30543810 DOI: 10.1016/j.jtbi.2018.12.012] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
84 Béal J, Pantolini L, Noël V, Barillot E, Calzone L. Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLoS Comput Biol 2021;17:e1007900. [PMID: 33507915 DOI: 10.1371/journal.pcbi.1007900] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
85 Glass L, Edwards R. Hybrid models of genetic networks: Mathematical challenges and biological relevance. J Theor Biol 2018;458:111-8. [PMID: 30227116 DOI: 10.1016/j.jtbi.2018.09.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Rozum JC, Gómez Tejeda Zañudo J, Gan X, Deritei D, Albert R. Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Sci Adv 2021;7:eabf8124. [PMID: 34272246 DOI: 10.1126/sciadv.abf8124] [Reference Citation Analysis]
87 Irons L, Humphrey JD. Cell signaling model for arterial mechanobiology. PLoS Comput Biol 2020;16:e1008161. [PMID: 32834001 DOI: 10.1371/journal.pcbi.1008161] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
88 Tealdi S, Ferro E, Campa CC, Bosia C. microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022;12:213. [DOI: 10.3390/biom12020213] [Reference Citation Analysis]
89 Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M, Helikar T. A Mechanistic Computational Model Reveals That Plasticity of CD4+ T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Front Physiol 2018;9:878. [PMID: 30116195 DOI: 10.3389/fphys.2018.00878] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
90 Choi M, Shi J, Zhu Y, Yang R, Cho KH. Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response. Nat Commun 2017;8:1940. [PMID: 29208897 DOI: 10.1038/s41467-017-02160-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
91 Yang G, Gómez Tejeda Zañudo J, Albert R. Target Control in Logical Models Using the Domain of Influence of Nodes. Front Physiol 2018;9:454. [PMID: 29867523 DOI: 10.3389/fphys.2018.00454] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
92 Penas DR, Henriques D, González P, Doallo R, Saez-Rodriguez J, Banga JR. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology. PLoS One 2017;12:e0182186. [PMID: 28813442 DOI: 10.1371/journal.pone.0182186] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
93 Zhang T, Androulakis IP, Bonate P, Cheng L, Helikar T, Parikh J, Rackauckas C, Subramanian K, Cho CR; Working Group. Two heads are better than one: current landscape of integrating QSP and machine learning : An ISoP QSP SIG white paper by the working group on the integration of quantitative systems pharmacology and machine learning. J Pharmacokinet Pharmacodyn 2022. [PMID: 35103884 DOI: 10.1007/s10928-022-09805-z] [Reference Citation Analysis]
94 Tareen SH, Kutmon M, Arts IC, de Kok TM, Evelo CT, Adriaens ME. Logical modelling reveals the PDC-PDK interaction as the regulatory switch driving metabolic flexibility at the cellular level. Genes Nutr 2019;14:27. [PMID: 31516637 DOI: 10.1186/s12263-019-0647-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
95 Ross BC, Boguslav M, Weeks H, Costello JC. Simulating heterogeneous populations using Boolean models. BMC Syst Biol 2018;12:64. [PMID: 29879983 DOI: 10.1186/s12918-018-0591-9] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
96 Gan X, Albert R. General method to find the attractors of discrete dynamic models of biological systems. Phys Rev E 2018;97:042308. [PMID: 29758614 DOI: 10.1103/PhysRevE.97.042308] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
97 Balbas-Martinez V, Ruiz-Cerdá L, Irurzun-Arana I, González-García I, Vermeulen A, Gómez-Mantilla JD, Trocóniz IF. A systems pharmacology model for inflammatory bowel disease. PLoS One 2018;13:e0192949. [PMID: 29513758 DOI: 10.1371/journal.pone.0192949] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
98 Montagud A, Traynard P, Martignetti L, Bonnet E, Barillot E, Zinovyev A, Calzone L. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases. Brief Bioinform 2019;20:1238-49. [PMID: 29237040 DOI: 10.1093/bib/bbx163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
99 Abou-Jaoudé W, Monteiro PT. On logical bifurcation diagrams. J Theor Biol 2019;466:39-63. [PMID: 30658053 DOI: 10.1016/j.jtbi.2019.01.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
100 Singh V, Ostaszewski M, Kalliolias GD, Chiocchia G, Olaso R, Petit-Teixeira E, Helikar T, Niarakis A. Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model. Genom Comput Biol 2018;4:e100050. [PMID: 29951575 DOI: 10.18547/gcb.2018.vol4.iss1.e100050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]