BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vaga S, Bernardo-Faura M, Cokelaer T, Maiolica A, Barnes CA, Gillet LC, Hegemann B, van Drogen F, Sharifian H, Klipp E, Peter M, Saez-Rodriguez J, Aebersold R. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast. Mol Syst Biol 2014;10:767. [PMID: 25492886 DOI: 10.15252/msb.20145112] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 von Stechow L, Olsen JV. Proteomics insights into DNA damage response and translating this knowledge to clinical strategies. Proteomics 2017;17. [PMID: 27682984 DOI: 10.1002/pmic.201600018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
2 Gonçalves E, Raguz Nakic Z, Zampieri M, Wagih O, Ochoa D, Sauer U, Beltrao P, Saez-Rodriguez J. Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. PLoS Comput Biol 2017;13:e1005297. [PMID: 28072816 DOI: 10.1371/journal.pcbi.1005297] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
3 Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 2017;10:eaag2435. [PMID: 28270554 DOI: 10.1126/scisignal.aag2435] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
4 Samir P, Rahul, Slaughter JC, Link AJ. Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli. PLoS One 2015;10:e0134099. [PMID: 26247773 DOI: 10.1371/journal.pone.0134099] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
5 Chelius C, Huso W, Reese S, Doan A, Lincoln S, Lawson K, Tran B, Purohit R, Glaros T, Srivastava R, Harris SD, Marten MR. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans. Mol Cell Proteomics 2020;19:1310-29. [PMID: 32430394 DOI: 10.1074/mcp.RA119.001769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Carrera M, Cañas B, Lopez-Ferrer D. Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO2-SCX-LC-MS/MS. Anal Chem 2017;89:8853-62. [PMID: 28787133 DOI: 10.1021/acs.analchem.7b01321] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
7 van Drogen F, Mishra R, Rudolf F, Walczak MJ, Lee SS, Reiter W, Hegemann B, Pelet S, Dohnal I, Binolfi A, Yudina Z, Selenko P, Wider G, Ammerer G, Peter M. Mechanical stress impairs pheromone signaling via Pkc1-mediated regulation of the MAPK scaffold Ste5. J Cell Biol 2019;218:3117-33. [PMID: 31315942 DOI: 10.1083/jcb.201808161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Muriel O, Michon L, Kukulski W, Martin SG. Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. J Cell Biol 2021;220:e202103142. [PMID: 34382996 DOI: 10.1083/jcb.202103142] [Reference Citation Analysis]
9 Invergo BM, Beltrao P. Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data. Essays Biochem 2018;62:525-34. [PMID: 30072490 DOI: 10.1042/EBC20180019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
10 Kanshin E, Bergeron-sandoval L, Isik S, Thibault P, Michnick S. A Cell-Signaling Network Temporally Resolves Specific versus Promiscuous Phosphorylation. Cell Reports 2015;10:1202-14. [DOI: 10.1016/j.celrep.2015.01.052] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 10.7] [Reference Citation Analysis]
11 Talemi SR, Tiger CF, Andersson M, Babazadeh R, Welkenhuysen N, Klipp E, Hohmann S, Schaber J. Systems Level Analysis of the Yeast Osmo-Stat. Sci Rep 2016;6:30950. [PMID: 27515486 DOI: 10.1038/srep30950] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
12 Gonzalez R, Morales P, Tronchoni J, Cordero-Bueso G, Vaudano E, Quirós M, Novo M, Torres-Pérez R, Valero E. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Front Microbiol 2016;7:1545. [PMID: 27733850 DOI: 10.3389/fmicb.2016.01545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
13 Van Drogen F, Dard N, Pelet S, Lee SS, Mishra R, Srejić N, Peter M. Crosstalk and spatiotemporal regulation between stress-induced MAP kinase pathways and pheromone signaling in budding yeast. Cell Cycle 2020;19:1707-15. [PMID: 32552303 DOI: 10.1080/15384101.2020.1779469] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Humphrey SJ, Azimifar SB, Mann M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 2015;33:990-5. [DOI: 10.1038/nbt.3327] [Cited by in Crossref: 290] [Cited by in F6Publishing: 243] [Article Influence: 48.3] [Reference Citation Analysis]
15 Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2016;16. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
16 Valdés A, Bergström Lind S. Mass Spectrometry-Based Analysis of Time-Resolved Proteome Quantification. Proteomics 2020;20:e1800425. [PMID: 31652013 DOI: 10.1002/pmic.201800425] [Reference Citation Analysis]
17 Leutert M, Rodríguez-Mias RA, Fukuda NK, Villén J. R2-P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies. Mol Syst Biol 2019;15:e9021. [PMID: 31885202 DOI: 10.15252/msb.20199021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 30.0] [Reference Citation Analysis]
18 Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 2019;17:66. [PMID: 31208443 DOI: 10.1186/s12964-019-0381-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
19 Riley NM, Coon JJ. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Anal Chem 2016;88:74-94. [PMID: 26539879 DOI: 10.1021/acs.analchem.5b04123] [Cited by in Crossref: 153] [Cited by in F6Publishing: 130] [Article Influence: 25.5] [Reference Citation Analysis]
20 Manfiolli AO, Mattos EC, de Assis LJ, Silva LP, Ulaş M, Brown NA, Silva-Rocha R, Bayram Ö, Goldman GH. Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Front Microbiol 2019;10:918. [PMID: 31134001 DOI: 10.3389/fmicb.2019.00918] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
21 von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 2015;12:469-87. [PMID: 26400465 DOI: 10.1586/14789450.2015.1078730] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
22 Suni V, Suomi T, Tsubosaka T, Imanishi SY, Elo LL, Corthals GL. SimPhospho: a software tool enabling confident phosphosite assignment. Bioinformatics 2018;34:2690-2. [PMID: 29596608 DOI: 10.1093/bioinformatics/bty151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]