BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021;12:177. [PMID: 33712058 DOI: 10.1186/s13287-021-02252-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Todisco S, Musio B, Pesce V, Cavalluzzi MM, Petrosillo G, La Piana G, Sgobba MN, Schlosserová N, Cafferati Beltrame L, Di Lorenzo R, Tragni V, Marzulli D, Guerra L, De Grassi A, Gallo V, Volpicella M, Palese LL, Lentini G, Pierri CL. Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023;208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Reference Citation Analysis]
2 Wang R, Xu H, Tan B, Yi Q, Sun Y, Xiang H, Chen T, Liu H, Xie Q, Wang L, Tian J, Zhu J. SIRT3 promotes metabolic maturation of human iPSC-derived cardiomyocytes via OPA1-controlled mitochondrial dynamics. Free Radic Biol Med 2023;195:270-82. [PMID: 36596388 DOI: 10.1016/j.freeradbiomed.2022.12.101] [Reference Citation Analysis]
3 Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022;10:1082095. [PMID: 36561366 DOI: 10.3389/fcell.2022.1082095] [Reference Citation Analysis]
4 Yoshida A, Sekine W, Homma J, Sekine H, Itoyama YY, Sasaki D, Matsuura K, Kobayashi E, Shimizu T. Development of appropriate fatty acid formulations to raise the contractility of constructed myocardial tissues. Regenerative Therapy 2022;21:413-23. [DOI: 10.1016/j.reth.2022.09.006] [Reference Citation Analysis]
5 Hayat R. Dynamics of metabolism and regulation of epigenetics during cardiomyocytes maturation. Cell Biol Int 2022. [PMID: 36208083 DOI: 10.1002/cbin.11931] [Reference Citation Analysis]
6 Kraus L. Targeting Epigenetic Regulation of Cardiomyocytes through Development for Therapeutic Cardiac Regeneration after Heart Failure. IJMS 2022;23:11878. [DOI: 10.3390/ijms231911878] [Reference Citation Analysis]
7 Chen G, Jiang H, Yao Y, Tao Z, Chen W, Huang F, Chen X. Macrophage, a potential targeted therapeutic immune cell for cardiomyopathy. Front Cell Dev Biol 2022;10:908790. [DOI: 10.3389/fcell.2022.908790] [Reference Citation Analysis]
8 Grün B, Tirre M, Pyschny S, Singh V, Kehl H, Jux C, Drenckhahn J. Inhibition of mitochondrial respiration has fundamentally different effects on proliferation, cell survival and stress response in immature versus differentiated cardiomyocyte cell lines. Front Cell Dev Biol 2022;10:1011639. [DOI: 10.3389/fcell.2022.1011639] [Reference Citation Analysis]
9 Guajardo-correa E, Silva-agüero JF, Calle X, Chiong M, Henríquez M, García-rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022;10:968373. [DOI: 10.3389/fcell.2022.968373] [Reference Citation Analysis]
10 Cho SW, Kim HK, Sung JH, Kim Y, Kim JH, Han J. Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells. Korean J Physiol Pharmacol 2022;26:357-365. [DOI: 10.4196/kjpp.2022.26.5.357] [Reference Citation Analysis]
11 Liu H, Sun Y, Xu H, Tan B, Yi Q, Tian J, Zhu J. PTEN-induced putative kinase 1 regulates mitochondrial quality control and is essential for the maturation of human induced pluripotent stem cell-derived cardiomyocytes. Genes & Diseases 2022. [DOI: 10.1016/j.gendis.2022.08.023] [Reference Citation Analysis]
12 Reilly L, Munawar S, Zhang J, Crone WC, Eckhardt LL. Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.966094] [Reference Citation Analysis]
13 Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022;10:886393. [DOI: 10.3389/fcell.2022.886393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rednic R, Marcovici I, Dragoi R, Pinzaru I, Dehelean CA, Tomescu M, Arnautu DA, Craina M, Gluhovschi A, Valcovici M, Manea A. In Vitro Toxicological Profile of Labetalol-Folic Acid/Folate Co-Administration in H9c2(2-1) and HepaRG Cells. Medicina (Kaunas) 2022;58:784. [PMID: 35744047 DOI: 10.3390/medicina58060784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Goyal S, Tiwari S, Seth B, Phoolmala, Tandon A, Kumar Chaturvedi R. Bisphenol-A Mediated Impaired DRP1-GFER Axis and Cognition Restored by PGC-1α Upregulation Through Nicotinamide in the Rat Brain Hippocampus. Mol Neurobiol 2022. [PMID: 35612786 DOI: 10.1007/s12035-022-02862-y] [Reference Citation Analysis]
16 Starr VJ, Dzialowski EM. Developing chicken cardiac muscle mitochondria are resistant to variations in incubation oxygen levels. Curr Res Physiol 2022;5:151-7. [PMID: 35345510 DOI: 10.1016/j.crphys.2022.03.001] [Reference Citation Analysis]
17 Wang Y, McLean AS. The Role of Mitochondria in the Immune Response in Critical Illness. Crit Care 2022;26:80. [PMID: 35337333 DOI: 10.1186/s13054-022-03908-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Sarkar C, Chaudhary P, Jamaddar S, Janmeda P, Mondal M, Mubarak MS, Islam MT. Redox Activity of Flavonoids: Impact on Human Health, Therapeutics, and Chemical Safety. Chem Res Toxicol 2022. [PMID: 35045245 DOI: 10.1021/acs.chemrestox.1c00348] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Wang Y, Mclean AS. The Role of Mitochondria in the Immune Response in Critical Illness. Annual Update in Intensive Care and Emergency Medicine 2022. [DOI: 10.1007/978-3-030-93433-0_1] [Reference Citation Analysis]
20 Perek B, Rajendram H, Erampamoorthy A, Shaikh O. Current knowledge about cardiomyocytes maturation and endogenous myocardial regeneration. Background to apply this potential in humans with end-stage heart failure. Medical Journal of Cell Biology 2021;9:153-159. [DOI: 10.2478/acb-2021-0021] [Reference Citation Analysis]
21 Ding Q, Qi Y, Tsang SY. Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes. Cells 2021;10:2463. [PMID: 34572112 DOI: 10.3390/cells10092463] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
22 Wang S, Jiang C, Zhao L, Sun S, Xiao Y, Ye L, Sun Q, Li J. Metabolic maturation during postnatal right ventricular development switches to heart-contraction regulation due to volume overload. J Cardiol 2021:S0914-5087(21)00227-6. [PMID: 34518077 DOI: 10.1016/j.jjcc.2021.08.025] [Reference Citation Analysis]
23 McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021;22:7730. [PMID: 34299348 DOI: 10.3390/ijms22147730] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Lemay SE, Awada C, Shimauchi T, Wu WH, Bonnet S, Provencher S, Boucherat O. Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH? Cells 2021;10:1473. [PMID: 34208388 DOI: 10.3390/cells10061473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]