BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jung G, Fajardo G, Ribeiro AJ, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D. Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J 2016;30:1464-79. [PMID: 26675706 DOI: 10.1096/fj.15-280982] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Rodriguez ML, Beussman KM, Chun KS, Walzer MS, Yang X, Murry CE, Sniadecki NJ. Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomater Sci Eng 2019;5:3876-88. [PMID: 33438427 DOI: 10.1021/acsbiomaterials.8b01256] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
2 Paci M, Penttinen K, Pekkanen-Mattila M, Koivumäki JT. Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020;77:300-16. [PMID: 33323698 DOI: 10.1097/FJC.0000000000000972] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Bernstein D. Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Platform for Testing For Drug Cardiotoxicity. Prog Pediatr Cardiol 2017;46:2-6. [PMID: 29200805 DOI: 10.1016/j.ppedcard.2017.07.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, Landi S, Barbuti A, Ferrarese Lupi F, Boarino L, Sartiani L, Tesi C, Mack DL, Regnier M, Cerbai E, Parmeggiani C, Poggesi C, Ferrantini C, Coppini R. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. Int J Mol Sci 2019;20:E3799. [PMID: 31382622 DOI: 10.3390/ijms20153799] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
5 Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges. Stem Cell Reports 2021;16:2049-57. [PMID: 33338434 DOI: 10.1016/j.stemcr.2020.11.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol. 2018;58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 11.2] [Reference Citation Analysis]
7 Wu P, Deng G, Sai X, Guo H, Huang H, Zhu P. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021;41:BSR20200833. [PMID: 33057659 DOI: 10.1042/BSR20200833] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2021;246:317-31. [PMID: 32938227 DOI: 10.1177/1535370220959598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kim MS, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front Cell Dev Biol 2020;8:440. [PMID: 32656206 DOI: 10.3389/fcell.2020.00440] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
10 Matsudaira K, Takahashi H, Hirayama-shoji K, Nguyen T, Tsukagoshi T, Shimoyama I. A MEMS-based measurement system for evaluating the force-length relationship of human induced pluripotent stem cell-derived cardiomyocytes adhered on a substrate. J Micromech Microeng 2019;29:055003. [DOI: 10.1088/1361-6439/ab093d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
11 Tan SH, Ye L. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. J Cardiovasc Transl Res. 2018;11:375-392. [PMID: 29557052 DOI: 10.1007/s12265-018-9801-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
12 Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G, Zöllner AM, Tiburcy M, Riegler J, Matsa E, Shukla P, Zhuge Y, Chour T, Chen VC, Burridge PW, Karakikes I, Kuhl E, Bernstein D, Couture LA, Gold JD, Zimmermann WH, Wu JC. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 2018;36:265-77. [PMID: 29086457 DOI: 10.1002/stem.2732] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 11.6] [Reference Citation Analysis]
13 Del Álamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, Mercola M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta 2016;1863:1717-27. [PMID: 26952934 DOI: 10.1016/j.bbamcr.2016.03.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Article Influence: 10.8] [Reference Citation Analysis]
14 Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, Serra M, Alves PM. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep. 2017;7:8590. [PMID: 28819274 DOI: 10.1038/s41598-017-08713-4] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 16.0] [Reference Citation Analysis]
15 Trieschmann J, Haustein M, Köster A, Hescheler J, Brockmeier K, Bennink G, Hannes T. Different Responses to Drug Safety Screening Targets between Human Neonatal and Infantile Heart Tissue and Cardiac Bodies Derived from Human-Induced Pluripotent Stem Cells. Stem Cells Int 2019;2019:6096294. [PMID: 30956672 DOI: 10.1155/2019/6096294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sriram K, Wiley SZ, Moyung K, Gorr MW, Salmerón C, Marucut J, French RP, Lowy AM, Insel PA. Detection and Quantification of GPCR mRNA: An Assessment and Implications of Data from High-Content Methods. ACS Omega 2019;4:17048-59. [PMID: 31646252 DOI: 10.1021/acsomega.9b02811] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
17 Napiwocki BN, Lang D, Stempien A, Zhang J, Vaidyanathan R, Makielski JC, Eckhardt LL, Glukhov AV, Kamp TJ, Crone WC. Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts. Biotechnol Bioeng 2021;118:442-52. [PMID: 32990953 DOI: 10.1002/bit.27582] [Reference Citation Analysis]
18 Dunn KK, Reichardt IM, Simmons AD, Jin G, Floy ME, Hoon KM, Palecek SP. Coculture of Endothelial Cells with Human Pluripotent Stem Cell-Derived Cardiac Progenitors Reveals a Differentiation Stage-Specific Enhancement of Cardiomyocyte Maturation. Biotechnol J 2019;14:e1800725. [PMID: 30927511 DOI: 10.1002/biot.201800725] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
19 Takada T, Sasaki D, Matsuura K, Miura K, Sakamoto S, Goto H, Ohya T, Iida T, Homma J, Shimizu T, Hagiwara N. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 2021;281:121351. [PMID: 34979417 DOI: 10.1016/j.biomaterials.2021.121351] [Reference Citation Analysis]
20 Gentillon C, Li D, Duan M, Yu WM, Preininger MK, Jha R, Rampoldi A, Saraf A, Gibson GC, Qu CK, Brown LA, Xu C. Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2019;132:120-35. [PMID: 31082397 DOI: 10.1016/j.yjmcc.2019.05.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
21 White MC, Pang L, Yang X. MicroRNA-mediated maturation of human pluripotent stem cell-derived cardiomyocytes: Towards a better model for cardiotoxicity? Food and Chemical Toxicology 2016;98:17-24. [DOI: 10.1016/j.fct.2016.05.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
22 Vander Roest AS, Liu C, Morck MM, Kooiker KB, Jung G, Song D, Dawood A, Jhingran A, Pardon G, Ranjbarvaziri S, Fajardo G, Zhao M, Campbell KS, Pruitt BL, Spudich JA, Ruppel KM, Bernstein D. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A 2021;118:e2025030118. [PMID: 34117120 DOI: 10.1073/pnas.2025030118] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Zhang XH, Morad M. Ca2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium 2020;90:102244. [PMID: 32585508 DOI: 10.1016/j.ceca.2020.102244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019;10:884. [PMID: 31447679 DOI: 10.3389/fphar.2019.00884] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
25 Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front Pharmacol 2018;9:431. [PMID: 29872392 DOI: 10.3389/fphar.2018.00431] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
26 Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018;5:E25. [PMID: 29751502 DOI: 10.3390/jcdd5020025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
27 Moreau A, Boutjdir M, Chahine M. Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges. Can J Physiol Pharmacol 2017;95:1108-16. [DOI: 10.1139/cjpp-2016-0726] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. Prog Biophys Mol Biol 2019;144:3-15. [PMID: 30579630 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
29 Insel PA, Sriram K, Gorr MW, Wiley SZ, Michkov A, Salmerón C, Chinn AM. GPCRomics: An Approach to Discover GPCR Drug Targets. Trends Pharmacol Sci 2019;40:378-87. [PMID: 31078319 DOI: 10.1016/j.tips.2019.04.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 13.7] [Reference Citation Analysis]
30 Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y. The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 2017;24:68. [PMID: 28870220 DOI: 10.1186/s12929-017-0367-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
31 Hasan A, Mohammadi N, Nawaz A, Kodagoda T, Diakonov I, Harding SE, Gorelik J. Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β2AR-cAMP Signalling. Cells 2020;9:E2275. [PMID: 33053822 DOI: 10.3390/cells9102275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 McKeithan WL, Savchenko A, Yu MS, Cerignoli F, Bruyneel AAN, Price JH, Colas AR, Miller EW, Cashman JR, Mercola M. An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 2017;8:766. [PMID: 29075196 DOI: 10.3389/fphys.2017.00766] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
33 Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020;11:384. [PMID: 32390874 DOI: 10.3389/fphys.2020.00384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 de Lange WJ, Farrell ET, Kreitzer CR, Jacobs DR, Lang D, Glukhov AV, Ralphe JC. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am J Physiol Heart Circ Physiol 2021;320:H1670-86. [PMID: 33606581 DOI: 10.1152/ajpheart.00941.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019;10:934. [PMID: 31555128 DOI: 10.3389/fphar.2019.00934] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
36 Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation. 2017;135:1832-1847. [PMID: 28167635 DOI: 10.1161/circulationaha.116.024145] [Cited by in Crossref: 267] [Cited by in F6Publishing: 157] [Article Influence: 53.4] [Reference Citation Analysis]
37 Werley CA, Boccardo S, Rigamonti A, Hansson EM, Cohen AE. Multiplexed Optical Sensors in Arrayed Islands of Cells for multimodal recordings of cellular physiology. Nat Commun 2020;11:3881. [PMID: 32753572 DOI: 10.1038/s41467-020-17607-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
38 Mannhardt I, Eder A, Dumotier B, Prondzynski M, Krämer E, Traebert M, Söhren KD, Flenner F, Stathopoulou K, Lemoine MD, Carrier L, Christ T, Eschenhagen T, Hansen A. Blinded Contractility Analysis in hiPSC-Cardiomyocytes in Engineered Heart Tissue Format: Comparison With Human Atrial Trabeculae. Toxicol Sci 2017;158:164-75. [PMID: 28453742 DOI: 10.1093/toxsci/kfx081] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
39 Emanuelli G, Zoccarato A, Reumiller CM, Papadopoulos A, Chong M, Rebs S, Betteridge K, Beretta M, Streckfuss-Bömeke K, Shah AM. A roadmap for the characterization of energy metabolism in human cardiomyocytes derived from induced pluripotent stem cells. J Mol Cell Cardiol 2021;164:136-47. [PMID: 34923199 DOI: 10.1016/j.yjmcc.2021.12.001] [Reference Citation Analysis]