BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vago JL, Westall F, Coates AJ, Jaumann R, Korablev O, Ciarletti V, Mitrofanov I, Josset JL, De Sanctis MC, Bibring JP, Rull F, Goesmann F, Steininger H, Goetz W, Brinckerhoff W, Szopa C, Raulin F, Westall F, Edwards HGM, Whyte LG, Fairén AG, Bibring JP, Bridges J, Hauber E, Ori GG, Werner S, Loizeau D, Kuzmin RO, Williams RME, Flahaut J, Forget F, Vago JL, Rodionov D, Korablev O, Svedhem H, Sefton-Nash E, Kminek G, Lorenzoni L, Joudrier L, Mikhailov V, Zashchirinskiy A, Alexashkin S, Calantropio F, Merlo A, Poulakis P, Witasse O, Bayle O, Bayón S, Meierhenrich U, Carter J, García-Ruiz JM, Baglioni P, Haldemann A, Ball AJ, Debus A, Lindner R, Haessig F, Monteiro D, Trautner R, Voland C, Rebeyre P, Goulty D, Didot F, Durrant S, Zekri E, Koschny D, Toni A, Visentin G, Zwick M, van Winnendael M, Azkarate M, Carreau C. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology 2017;17:471-510. [PMID: 31067287 DOI: 10.1089/ast.2016.1533] [Cited by in Crossref: 187] [Cited by in F6Publishing: 79] [Article Influence: 37.4] [Reference Citation Analysis]
Number Citing Articles
1 Veneranda M, Lopez-Reyes G, Pascual Sanchez E, Krzesińska AM, Manrique-Martinez JA, Sanz-Arranz A, Lantz C, Lalla E, Moral A, Medina J, Poulet F, Dypvik H, Werner SC, Vago JL, Rull F. ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. Astrobiology 2021;21:307-22. [PMID: 33252242 DOI: 10.1089/ast.2020.2265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
2 Cockell CS, Stevens AH, Prescott R. Habitability is a binary property. Nat Astron 2019;3:956-7. [DOI: 10.1038/s41550-019-0916-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
3 Tornabene LL, Seelos FP, Pommerol A, Thomas N, Caudill CM, Becerra P, Bridges JC, Byrne S, Cardinale M, Chojnacki M, Conway SJ, Cremonese G, Dundas CM, El-maarry MR, Fernando J, Hansen CJ, Hansen K, Harrison TN, Henson R, Marinangeli L, Mcewen AS, Pajola M, Sutton SS, Wray JJ. Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci Rev 2018;214. [DOI: 10.1007/s11214-017-0436-7] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
4 Billi D, Verseux C, Fagliarone C, Napoli A, Baqué M, de Vera J. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. Astrobiology 2019;19:158-69. [DOI: 10.1089/ast.2017.1807] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
5 Cheptsov VS, Vorobyova EA, Manucharova NA, Gorlenko MV, Pavlov AK, Vdovina MA, Lomasov VN, Bulat SA. 100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions. Extremophiles 2017;21:1057-67. [DOI: 10.1007/s00792-017-0966-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
6 Krzesińska AM, Bultel B, Loizeau D, Craw D, April R, Poulet F, Werner SC. Mineralogical and Spectral (Near-Infrared) Characterization of Fe-Rich Vermiculite-Bearing Terrestrial Deposits and Constraints for Mineralogy of Oxia Planum, ExoMars 2022 Landing Site. Astrobiology 2021;21:997-1016. [PMID: 34406809 DOI: 10.1089/ast.2020.2410] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Frigeri A, Ercoli M. The ScanMars Subsurface Radar Sounding Experiment on AMADEE-18. Astrobiology 2020;20:1338-52. [DOI: 10.1089/ast.2019.2037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sapers HM, Razzell Hollis J, Bhartia R, Beegle LW, Orphan VJ, Amend JP. The Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by Deep UV Raman Spectroscopy. Front Microbiol 2019;10:679. [PMID: 31156562 DOI: 10.3389/fmicb.2019.00679] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
9 Mateo-Marti E, Prieto-Ballesteros O, Muñoz Caro G, González-Díaz C, Muñoz-Iglesias V, Gálvez-Martínez S. Characterizing Interstellar Medium, Planetary Surface and Deep Environments by Spectroscopic Techniques Using Unique Simulation Chambers at Centro de Astrobiologia (CAB). Life (Basel) 2019;9:E72. [PMID: 31510002 DOI: 10.3390/life9030072] [Reference Citation Analysis]
10 Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. Astrobiology 2020;20:1076-96. [PMID: 32856927 DOI: 10.1089/ast.2019.2167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Criado-Reyes J, Bizzarri BM, García-Ruiz JM, Saladino R, Di Mauro E. The role of borosilicate glass in Miller-Urey experiment. Sci Rep 2021;11:21009. [PMID: 34697338 DOI: 10.1038/s41598-021-00235-4] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Azua-Bustos A, Fairén AG, Silva CG, Carrizo D, Fernández-Martínez MÁ, Arenas-Fajardo C, Fernández-Sampedro M, Gil-Lozano C, Sánchez-García L, Ascaso C, Wierzchos J, Rampe EB. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 2020;10:19183. [PMID: 33154541 DOI: 10.1038/s41598-020-76302-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021;93:5981-97. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Reference Citation Analysis]
14 Geromichalos D, Azkarate M, Tsardoulias E, Gerdes L, Petrou L, Perez Del Pulgar C. SLAM for autonomous planetary rovers with global localization. J Field Robotics 2020;37:830-47. [DOI: 10.1002/rob.21943] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Pineau M, Le Deit L, Chauviré B, Carter J, Rondeau B, Mangold N. Toward the geological significance of hydrated silica detected by near infrared spectroscopy on Mars based on terrestrial reference samples. Icarus 2020;347:113706. [DOI: 10.1016/j.icarus.2020.113706] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Picard A, Gartman A, Girguis PR. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection. Astrobiology 2021;21:587-604. [DOI: 10.1089/ast.2020.2276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lakdawalla E. Similarities and differences in the landing sites of ESA’s and NASA’s 2020 Mars rovers. Nat Astron 2019;3:190-2. [DOI: 10.1038/s41550-019-0727-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
18 Atri D. Investigating the biological potential of galactic cosmic ray-induced radiation-driven chemical disequilibrium in the Martian subsurface environment. Sci Rep 2020;10:11646. [PMID: 32724041 DOI: 10.1038/s41598-020-68715-7] [Reference Citation Analysis]
19 Lalla EA, Konstantinidis M, Veneranda M, Daly MG, Manrique JA, Lymer EA, Freemantle J, Cloutis EA, Stromberg JM, Shkolyar S, Caudill C, Applin D, Vago JL, Rull F, Lopez-Reyes G. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. Astrobiology 2022. [PMID: 35041521 DOI: 10.1089/ast.2021.0055] [Reference Citation Analysis]
20 Sánchez-ibánez JR, Pérez-del-pulgar CJ, Azkarate M, Gerdes L, García-cerezo A. Dynamic path planning for reconfigurable rovers using a multi-layered grid. Engineering Applications of Artificial Intelligence 2019;86:32-42. [DOI: 10.1016/j.engappai.2019.08.011] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
21 Caudill CM, Pontefract AJ, Osinski GR, Tornabene LL, Pilles EA, Battler M, Francis R, Godin E, Grau Galofre A, Haltigin T, Hipkin VJ, Mittelholz A, Poitras J, Simpson SL, Svensson M, Xie T, Morse ZR. CanMars mission Science Team operational results: Implications for operations and the sample selection process for Mars Sample Return (MSR). Planetary and Space Science 2019;172:43-56. [DOI: 10.1016/j.pss.2019.04.004] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
22 Ribes-pleguezuelo P, Guilhot D, Gilaberte Basset M, Beckert E, Eberhardt R, Tünnermann A. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process. Instruments 2019;3:25. [DOI: 10.3390/instruments3020025] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
23 [DOI: 10.1117/12.2536116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
24 Janjic A. The Need for Including Virus Detection Methods in Future Mars Missions. Astrobiology 2018;18:1611-4. [DOI: 10.1089/ast.2018.1851] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Quantin-Nataf C, Carter J, Mandon L, Thollot P, Balme M, Volat M, Pan L, Loizeau D, Millot C, Breton S, Dehouck E, Fawdon P, Gupta S, Davis J, Grindrod PM, Pacifici A, Bultel B, Allemand P, Ody A, Lozach L, Broyer J. Oxia Planum: The Landing Site for the ExoMars "Rosalind Franklin" Rover Mission: Geological Context and Prelanding Interpretation. Astrobiology 2021;21:345-66. [PMID: 33400892 DOI: 10.1089/ast.2019.2191] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 18.0] [Reference Citation Analysis]
26 Lalla EA, Konstantinidis M, Lymer E, Gilmour CM, Freemantle J, Such P, Cote K, Groemer G, Martinez-Frias J, Cloutis EA, Daly MG. Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars. Appl Spectrosc 2021;:37028211016892. [PMID: 33988039 DOI: 10.1177/00037028211016892] [Reference Citation Analysis]
27 Mckay CP. What Is Life—and When Do We Search for It on Other Worlds. Astrobiology 2020;20:163-6. [DOI: 10.1089/ast.2019.2136] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Silvestro S, Pacifici A, Salese F, Vaz DA, Neesemann A, Tirsch D, Popa CI, Pajola M, Franzese G, Mongelluzzo G, Ruggeri AC, Cozzolino F, Porto C, Esposito F. Periodic Bedrock Ridges at the ExoMars 2022 Landing Site: Evidence for a Changing Wind Regime. Geophys Res Lett 2021;48:e2020GL091651. [PMID: 33776161 DOI: 10.1029/2020GL091651] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Pisello A, De Angelis S, Ferrari M, Porreca M, Vetere FP, Behrens H, De Sanctis MC, Perugini D. Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geology. Icarus 2022;374:114801. [DOI: 10.1016/j.icarus.2021.114801] [Reference Citation Analysis]
30 Cassaro A, Pacelli C, Baqué M, de Vera JP, Böttger U, Botta L, Saladino R, Rabbow E, Onofri S. Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. J Fungi (Basel) 2021;7:859. [PMID: 34682280 DOI: 10.3390/jof7100859] [Reference Citation Analysis]
31 Warren-Rhodes KA, Lee KC, Archer SDJ, Cabrol N, Ng-Boyle L, Wettergreen D, Zacny K, Pointing SB; NASA Life in the Atacama Project Team. Subsurface Microbial Habitats in an Extreme Desert Mars-Analog Environment. Front Microbiol 2019;10:69. [PMID: 30873126 DOI: 10.3389/fmicb.2019.00069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
32 Haltigin T, Hauber E, Kminek G, Meyer MA, Agee CB, Busemann H, Carrier BL, Glavin DP, Hays LE, Marty B, Pratt LM, Udry A, Zorzano MP, Beaty DW, Cavalazzi B, Cockell CS, Debaille V, Grady MM, Hutzler A, McCubbin FM, Regberg AB, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Tosca NJ, Usui T, Velbel MA, Wadhwa M, Westall F. Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. Astrobiology 2021. [PMID: 34904885 DOI: 10.1089/AST.2021.0122] [Reference Citation Analysis]
33 He Y, Buch A, Szopa C, Williams AJ, Millan M, Guzman M, Freissinet C, Malespin C, Glavin DP, Eigenbrode JL, Coscia D, Teinturier S, Pin lu, Cabane M, Mahaffy PR. The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments. TrAC Trends in Analytical Chemistry 2020;127:115896. [DOI: 10.1016/j.trac.2020.115896] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Dehant V, Debaille V, Dobos V, Gaillard F, Gillmann C, Goderis S, Grenfell JL, Höning D, Javaux EJ, Karatekin Ö, Morbidelli A, Noack L, Rauer H, Scherf M, Spohn T, Tackley P, Van Hoolst T, Wünnemann K. Geoscience for Understanding Habitability in the Solar System and Beyond. Space Sci Rev 2019;215. [DOI: 10.1007/s11214-019-0608-8] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Korablev OI, Dobrolensky Y, Evdokimova N, Fedorova AA, Kuzmin RO, Mantsevich SN, Cloutis EA, Carter J, Poulet F, Flahaut J, Griffiths A, Gunn M, Schmitz N, Martín-Torres J, Zorzano MP, Rodionov DS, Vago JL, Stepanov AV, Titov AY, Vyazovetsky NA, Trokhimovskiy AY, Sapgir AG, Kalinnikov YK, Ivanov YS, Shapkin AA, Ivanov AY. Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover. Astrobiology 2017;17:542-64. [PMID: 28731817 DOI: 10.1089/ast.2016.1543] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 7.2] [Reference Citation Analysis]
36 Guilhot D, Ribes-pleguezuelo P. Laser Technology in Photonic Applications for Space. Instruments 2019;3:50. [DOI: 10.3390/instruments3030050] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
37 Stalport F, Rouquette L, Poch O, Dequaire T, Chaouche-mechidal N, Payart S, Szopa C, Coll P, Chaput D, Jaber M, Raulin F, Cottin H. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. Astrobiology 2019;19:1037-52. [DOI: 10.1089/ast.2018.2001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
38 Gerdes L, Azkarate M, Sánchez‐ibáñez JR, Joudrier L, Perez‐del‐pulgar CJ. Efficient autonomous navigation for planetary rovers with limited resources. J Field Robotics. [DOI: 10.1002/rob.21981] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP. Survival, DNA, and Ultrastructural Integrity of a Cryptoendolithic Antarctic Fungus in Mars and Lunar Rock Analogs Exposed Outside the International Space Station. Astrobiology 2019;19:170-82. [PMID: 30376361 DOI: 10.1089/ast.2017.1728] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
40 Lopez‐reyes G, Pilorget C, Moral AG, Manrique JA, Sanz A, Berrocal A, Veneranda M, Rull F, Medina J, Hamm V, Bibring J, Rodriguez JA, Perez Canora C, Mateo‐marti E, Prieto‐ballesteros O, Lalla E, Vago JL. Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover. J Raman Spectrosc 2020;51:1718-30. [DOI: 10.1002/jrs.5832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
41 Reinhardt M, Goetz W, Thiel V. Testing Flight-like Pyrolysis Gas Chromatography–Mass Spectrometry as Performed by the Mars Organic Molecule Analyzer Onboard the ExoMars 2020 Rover on Oxia Planum Analog Samples. Astrobiology 2020;20:415-28. [DOI: 10.1089/ast.2019.2143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Podolich O, Kukharenko O, Haidak A, Zaets I, Zaika L, Storozhuk O, Palchikovska L, Orlovska I, Reva O, Borisova T, Khirunenko L, Sosnin M, Rabbow E, Kravchenko V, Skoryk M, Kremenskoy M, Demets R, Olsson-francis K, Kozyrovska N, de Vera JP. Multimicrobial Kombucha Culture Tolerates Mars-like Conditions Simulated on Low Earth Orbit. Astrobiology 2019;19:183-96. [DOI: 10.1089/ast.2017.1746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
43 Stromberg JM, Parkinson A, Morison M, Cloutis E, Casson N, Applin D, Poitras J, Marti AM, Maggiori C, Cousins C, Whyte L, Kruzelecky R, Das D, Leveille R, Berlo K, Sharma SK, Acosta-maeda T, Daly M, Lalla E. Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment. Planetary and Space Science 2019;176:104683. [DOI: 10.1016/j.pss.2019.06.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Laurent B, Cousins C, Pereira M, Martins Z. Effects of UV-organic interaction and martian conditions on the survivability of organics. Icarus 2019;323:33-9. [DOI: 10.1016/j.icarus.2019.01.020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Longo A, Damer B. Factoring Origin of Life Hypotheses into the Search for Life in the Solar System and Beyond. Life (Basel) 2020;10:E52. [PMID: 32349245 DOI: 10.3390/life10050052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Baqué M, Napoli A, Fagliarone C, Moeller R, de Vera JP, Billi D. Carotenoid Raman Signatures Are Better Preserved in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis than in Hydrated Counterparts after High-Dose Gamma Irradiation. Life (Basel) 2020;10:E83. [PMID: 32521820 DOI: 10.3390/life10060083] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Feshangsaz N, Semsarha F, Tackallou SH, Nazmi K, Monaghan EP, Riedo A, van Loon JJWA. Survival of the Halophilic Archaeon Halovarius luteus after Desiccation, Simulated Martian UV Radiation and Vacuum in Comparison to Bacillus atrophaeus. Orig Life Evol Biosph 2020;50:157-73. [PMID: 32617792 DOI: 10.1007/s11084-020-09597-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Noffke N. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars. Astrobiology 2021;21:866-92. [PMID: 34042490 DOI: 10.1089/ast.2021.0011] [Reference Citation Analysis]
49 Cockell CS, Holt J, Campbell J, Groseman H, Josset J, Bontognali TRR, Phelps A, Hakobyan L, Kuretn L, Beattie A, Blank J, Bonaccorsi R, Mckay C, Shirvastava A, Stoker C, Willson D, Mclaughlin S, Payler S, Stevens A, Wadsworth J, Bessone L, Maurer M, Sauro F, Martin-torres J, Zorzano M, Bhardwaj A, Soria-salinas A, Mathanlal T, Nazarious MI, Ramachandran AV, Vaishampayan P, Guan L, Perl SM, Telling J, Boothroyd IM, Tyson O, Realff J, Rowbottom J, Lauernt B, Gunn M, Shah S, Singh S, Paling S, Edwards T, Yeoman L, Meehan E, Toth C, Scovell P, Suckling B. Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK. International Journal of Astrobiology 2019;18:157-82. [DOI: 10.1017/s1473550418000186] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
50 Pál BD, Kereszturi Á. Deliquescence probability maps of Mars and key limiting factors using GCM model calculations. Icarus 2022;376:114856. [DOI: 10.1016/j.icarus.2021.114856] [Reference Citation Analysis]
51 Bibring J, Hamm V, Pilorget C, Vago JL, the Micromega Team. The MicrOmega Investigation Onboard ExoMars. Astrobiology 2017;17:621-6. [DOI: 10.1089/ast.2016.1642] [Cited by in Crossref: 49] [Article Influence: 9.8] [Reference Citation Analysis]
52 Ciarletti V, Clifford S, Plettemeier D, Le Gall A, Hervé Y, Dorizon S, Quantin-nataf C, Benedix W, Schwenzer S, Pettinelli E, Heggy E, Herique A, Berthelier J, Kofman W, Vago JL, Hamran S, the Wisdom Team. The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling. Astrobiology 2017;17:565-84. [DOI: 10.1089/ast.2016.1532] [Cited by in Crossref: 32] [Cited by in F6Publishing: 3] [Article Influence: 6.4] [Reference Citation Analysis]
53 Riedo A, de Koning C, Stevens AH, Cockell CS, McDonald A, López AC, Grimaudo V, Tulej M, Wurz P, Ehrenfreund P. The Detection of Elemental Signatures of Microbes in Martian Mudstone Analogs Using High Spatial Resolution Laser Ablation Ionization Mass Spectrometry. Astrobiology 2020;20:1224-35. [PMID: 33001758 DOI: 10.1089/ast.2019.2087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
54 Preston LJ, Barcenilla R, Dartnell LR, Kucukkilic-Stephens E, Olsson-Francis K. Infrared Spectroscopic Detection of Biosignatures at Lake Tírez, Spain: Implications for Mars. Astrobiology 2020;20:15-25. [PMID: 31592682 DOI: 10.1089/ast.2019.2106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Pacelli C, Cassaro A, Catanzaro I, Baqué M, Maturilli A, Böttger U, Rabbow E, de Vera JP, Onofri S. The Ground-Based BIOMEX Experiment Verification Tests for Life Detection on Mars. Life (Basel) 2021;11:1212. [PMID: 34833088 DOI: 10.3390/life11111212] [Reference Citation Analysis]
56 Lukmanov RA, Riedo A, Wacey D, Ligterink NFW, Grimaudo V, Tulej M, de Koning C, Neubeck A, Wurz P. On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry. Front Artif Intell 2021;4:668163. [PMID: 34497998 DOI: 10.3389/frai.2021.668163] [Reference Citation Analysis]
57 Meierhenrich U. Theoretical origins: Comment on "Prebiotic chemistry and origins of life research with atomistic computer simulations" by A. Marco Saitta et al. Phys Life Rev 2020;34-35:147-8. [PMID: 31767493 DOI: 10.1016/j.plrev.2019.11.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
58 Bonales LJ, Mateo-Martí E. Study of the Stability of Gly·MgSO4·5H2O under Simulated Martian Conditions by In Situ Raman Spectroscopy. Astrobiology 2021. [PMID: 34874753 DOI: 10.1089/ast.2021.0048] [Reference Citation Analysis]
59 Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. Astrobiology 2021;21:813-30. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Fawdon P, Grindrod P, Orgel C, Sefton-nash E, Adeli S, Balme M, Cremonese G, Davis J, Frigeri A, Hauber E, Le Deit L, Loizeau D, Nass A, Parks-bowen A, Quantin-nataf C, Thomas N, Vago JL, Volat M. The geography of Oxia Planum. Journal of Maps 2021;17:621-37. [DOI: 10.1080/17445647.2021.1982035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Aureli L, Pacelli C, Cassaro A, Fujimori A, Moeller R, Onofri S. Iron Ion Particle Radiation Resistance of Dried Colonies of Cryomyces antarcticus Embedded in Martian Regolith Analogues. Life (Basel) 2020;10:E306. [PMID: 33255166 DOI: 10.3390/life10120306] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Javaux EJ. Challenges in evidencing the earliest traces of life. Nature 2019;572:451-60. [PMID: 31435057 DOI: 10.1038/s41586-019-1436-4] [Cited by in Crossref: 55] [Cited by in F6Publishing: 25] [Article Influence: 18.3] [Reference Citation Analysis]
63 Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. Biochim Biophys Acta Proteins Proteom 2018;1866:743-58. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
64 Coates A, Jaumann R, Griffiths A, Leff C, Schmitz N, Josset J, Paar G, Gunn M, Hauber E, Cousins C, Cross R, Grindrod P, Bridges J, Balme M, Gupta S, Crawford I, Irwin P, Stabbins R, Tirsch D, Vago J, Theodorou T, Caballo-perucha M, Osinski G, the Pancam Team. The PanCam Instrument for the ExoMars Rover. Astrobiology 2017;17:511-41. [DOI: 10.1089/ast.2016.1548] [Cited by in Crossref: 33] [Cited by in F6Publishing: 6] [Article Influence: 6.6] [Reference Citation Analysis]
65 Westall F, Hickman-lewis K, Cavalazzi B. Biosignatures in Deep Time. In: Cavalazzi B, Westall F, editors. Biosignatures for Astrobiology. Cham: Springer International Publishing; 2019. pp. 145-64. [DOI: 10.1007/978-3-319-96175-0_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Rouquette L, Stalport F, Cottin H, Colas C, Georgelin T, Chaouche-Mechidal N, Lasne J, Mahfouf S, Raulin F, Selliez L, Szopa C, Coll P. Dimerization of Uracil in a Simulated Mars-like UV Radiation Environment. Astrobiology 2020;20:1363-76. [PMID: 33179968 DOI: 10.1089/ast.2019.2157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
67 Purkamo L, Kietäväinen R, Nuppunen-Puputti M, Bomberg M, Cousins C. Ultradeep Microbial Communities at 4.4 km within Crystalline Bedrock: Implications for Habitability in a Planetary Context. Life (Basel) 2020;10:E2. [PMID: 31947979 DOI: 10.3390/life10010002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
68 Veneranda M, Manrique-Martinez JA, Lopez-Reyes G, Medina J, Torre-Fdez I, Castro K, Madariaga JM, Lantz C, Poulet F, Krzesińska AM, Hellevang H, Werner SC, Rull F. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission. Spectrochim Acta A Mol Biomol Spectrosc 2019;223:117360. [PMID: 31319272 DOI: 10.1016/j.saa.2019.117360] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 García-Ruiz JM, van Zuilen MA, Bach W. The convergence of minerals and life: Reply to comments on "Mineral self-organization on a lifeless planet". Phys Life Rev 2020;34-35:99-104. [PMID: 32868160 DOI: 10.1016/j.plrev.2020.07.004] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Megevand V, Viennet JC, Balan E, Gauthier M, Rosier P, Morand M, Garino Y, Guillaumet M, Pont S, Beyssac O, Bernard S. Impact of UV Radiation on the Raman Signal of Cystine: Implications for the Detection of S-rich Organics on Mars. Astrobiology 2021;21:566-74. [PMID: 33691484 DOI: 10.1089/ast.2020.2340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Edgett KS, Banham SG, Bennett KA, Edgar LA, Edwards CS, Fairén AG, Fedo CM, Fey DM, Garvin JB, Grotzinger JP, Gupta S, Henderson MJ, House CH, Mangold N, McLennan SM, Newsom HE, Rowland SK, Siebach KL, Thompson L, VanBommel SJ, Wiens RC, Williams RME, Yingst RA. Extraformational sediment recycling on Mars. Geosphere (Boulder) 2020;16:1508-37. [PMID: 33304202 DOI: 10.1130/GES02244.1] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
72 Aerts JW, Riedo A, Melton DJ, Martini S, Flahaut J, Meierhenrich UJ, Meinert C, Myrgorodska I, Lindner R, Ehrenfreund P. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars. Astrobiology 2020;20:766-84. [DOI: 10.1089/ast.2019.2063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
73 Mißbach H, Steininger H, Thiel V, Goetz W. Investigating the Effect of Perchlorate on Flight-like Gas Chromatography-Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover. Astrobiology 2019;19:1339-52. [PMID: 31532228 DOI: 10.1089/ast.2018.1997] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
74 Beaty DW, Grady MM, Mcsween HY, Sefton-nash E, Carrier BL, Altieri F, Amelin Y, Ammannito E, Anand M, Benning LG, Bishop JL, Borg LE, Boucher D, Brucato JR, Busemann H, Campbell KA, Czaja AD, Debaille V, Des Marais DJ, Dixon M, Ehlmann BL, Farmer JD, Fernandez-remolar DC, Filiberto J, Fogarty J, Glavin DP, Goreva YS, Hallis LJ, Harrington AD, Hausrath EM, Herd CDK, Horgan B, Humayun M, Kleine T, Kleinhenz J, Mackelprang R, Mangold N, Mayhew LE, Mccoy JT, Mccubbin FM, Mclennan SM, Moser DE, Moynier F, Mustard JF, Niles PB, Ori GG, Raulin F, Rettberg P, Rucker MA, Schmitz N, Schwenzer SP, Sephton MA, Shaheen R, Sharp ZD, Shuster DL, Siljeström S, Smith CL, Spry JA, Steele A, Swindle TD, ten Kate IL, Tosca NJ, Usui T, Van Kranendonk MJ, Wadhwa M, Weiss BP, Werner SC, Westall F, Wheeler RM, Zipfel J, Zorzano MP. The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST). Meteorit Planet Sci 2019;54:S3-S152. [DOI: 10.1111/maps.13242] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 7.7] [Reference Citation Analysis]
75 Martín-torres J, Zorzano M, Soria-salinas Á, Nazarious MI, Konatham S, Mathanlal T, Ramachandran AV, Ramírez-luque J, Mantas-nakhai R. The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform. Planetary and Space Science 2020;190:104968. [DOI: 10.1016/j.pss.2020.104968] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
76 Beaty DW, Hipkin VJ, Caudill CM, Hansen RF, Hausrath EM, Maggiori C, Mccoubrey R, Parrish JC, Ralston S. Geological evaluation of the MSRAD field site by a human field party: Implications for rover-based exploration operations and for the future human exploration of Mars. Planetary and Space Science 2019;171:34-49. [DOI: 10.1016/j.pss.2019.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
77 Mandon L, Parkes Bowen A, Quantin-Nataf C, Bridges JC, Carter J, Pan L, Beck P, Dehouck E, Volat M, Thomas N, Cremonese G, Tornabene LL, Thollot P. Morphological and Spectral Diversity of the Clay-Bearing Unit at the ExoMars Landing Site Oxia Planum. Astrobiology 2021;21:464-80. [PMID: 33646016 DOI: 10.1089/ast.2020.2292] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
78 Westall F, Hickman-lewis K, Cavalazzi B, Foucher F, Clodoré L, Vago JL. On biosignatures for Mars. International Journal of Astrobiology 2021;20:377-93. [DOI: 10.1017/s1473550421000264] [Reference Citation Analysis]
79 Zhao JJ, Zhang YF, Zhao TL, Li H, Yao QZ, Fu SQ, Zhou GT. Abiotic Formation of Calcium Oxalate under UV Irradiation and Implications for Biomarker Detection on Mars. Astrobiology 2022;22:35-48. [PMID: 35020413 DOI: 10.1089/ast.2020.2416] [Reference Citation Analysis]
80 [DOI: 10.1101/269605] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
81 Góes-Neto A, Kukharenko O, Orlovska I, Podolich O, Imchen M, Kumavath R, Kato RB, de Carvalho DS, Tiwari S, Brenig B, Azevedo V, Reva O, de Vera JP, Kozyrovska N, Barh D. Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ Microbiol 2021;23:3727-42. [PMID: 33476085 DOI: 10.1111/1462-2920.15405] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
82 Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. Astrobiology 2021;21:1363-86. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Reference Citation Analysis]
83 Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2020;120:4660-89. [DOI: 10.1021/acs.chemrev.9b00474] [Cited by in Crossref: 32] [Cited by in F6Publishing: 17] [Article Influence: 10.7] [Reference Citation Analysis]
84 García-Ruiz JM, van Zuilen MA, Bach W. Mineral self-organization on a lifeless planet. Phys Life Rev 2020;34-35:62-82. [PMID: 32303465 DOI: 10.1016/j.plrev.2020.01.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
85 Josset JL, Westall F, Hofmann BA, Spray J, Cockell C, Kempe S, Griffiths AD, De Sanctis MC, Colangeli L, Koschny D, Föllmi K, Verrecchia E, Diamond L, Josset M, Javaux EJ, Esposito F, Gunn M, Souchon-Leitner AL, Bontognali TRR, Korablev O, Erkman S, Paar G, Ulamec S, Foucher F, Martin P, Verhaeghe A, Tanevski M, Vago JL. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology 2017;17:595-611. [PMID: 28731819 DOI: 10.1089/ast.2016.1546] [Cited by in Crossref: 26] [Cited by in F6Publishing: 7] [Article Influence: 5.2] [Reference Citation Analysis]
86 Wiesendanger R, Wacey D, Tulej M, Neubeck A, Ivarsson M, Grimaudo V, Moreno-garcía P, Cedeño-lópez A, Riedo A, Wurz P. Chemical and Optical Identification of Micrometer-Sized 1.9 Billion-Year-Old Fossils by Combining a Miniature Laser Ablation Ionization Mass Spectrometry System with an Optical Microscope. Astrobiology 2018;18:1071-80. [DOI: 10.1089/ast.2017.1780] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
87 Foucher F, Bost N, Guimbretière G, Courtois A, Hickman-lewis K, Marceau E, Martin P, Westall F. Igneous rock powder identification using colour cameras: A powerful method for space exploration. Icarus 2022;375:114848. [DOI: 10.1016/j.icarus.2021.114848] [Reference Citation Analysis]
88 Guzman M, Szopa C, Freissinet C, Buch A, Stalport F, Kaplan D, Raulin F. Testing the capabilities of the Mars Organic Molecule Analyser (MOMA) chromatographic columns for the separation of organic compounds on Mars. Planetary and Space Science 2020;186:104903. [DOI: 10.1016/j.pss.2020.104903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Tan JSW, Sephton MA. Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit. Astrobiology 2021;21:638-54. [PMID: 33835833 DOI: 10.1089/ast.2020.2344] [Reference Citation Analysis]
90 Gong J, Munoz-Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. Geobiology 2021. [PMID: 34590770 DOI: 10.1111/gbi.12471] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Cleland CE. Moving Beyond Definitions in the Search for Extraterrestrial Life. Astrobiology 2019;19:722-9. [DOI: 10.1089/ast.2018.1980] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
92 Rouillard J, García-Ruiz JM, Kah L, Gérard E, Barrier L, Nabhan S, Gong J, van Zuilen MA. Identifying microbial life in rocks: Insights from population morphometry. Geobiology 2020;18:282-305. [PMID: 31876987 DOI: 10.1111/gbi.12377] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
93 Veneranda M, Lopez-Reyes G, Saiz J, Manrique-Martinez JA, Sanz-Arranz A, Medina J, Moral A, Seoane L, Ibarmia S, Rull F. ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman Laser Spectrometer. Sci Rep 2021;11:1461. [PMID: 33446849 DOI: 10.1038/s41598-021-81014-z] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
94 Baqué M, Hanke F, Böttger U, Leya T, Moeller R, de Vera J. Protection of cyanobacterial carotenoids' Raman signatures by Martian mineral analogues after high-dose gamma irradiation. J Raman Spectrosc 2018;49:1617-27. [DOI: 10.1002/jrs.5449] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
95 Roberts AL, Fawdon P, Mirino M. Impact crater degradation, Oxia Planum, Mars. Journal of Maps 2021;17:581-90. [DOI: 10.1080/17445647.2021.1976685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Poulet F, Gross C, Horgan B, Loizeau D, Bishop JL, Carter J, Orgel C. Mawrth Vallis, Mars: A Fascinating Place for Future In Situ Exploration. Astrobiology 2020;20:199-234. [PMID: 31916851 DOI: 10.1089/ast.2019.2074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
97 Changela HG, Chatzitheodoridis E, Antunes A, Beaty D, Bouw K, Bridges JC, Capova KA, Cockell CS, Conley CA, Dadachova E, Dallas TD, de Mey S, Dong C, Ellery A, Ferus M, Foing B, Fu X, Fujita K, Lin Y, Jheeta S, Hicks LJ, Hu S, Kereszturi A, Krassakis A, Liu Y, Oberst J, Michalski J, Ranjith PM, Rinaldi T, Rothery D, Stavrakakis HA, Selbmann L, Sinha RK, Wang A, Williford K, Vaci Z, Vago JL, Waltemathe M, Hallsworth JE. Mars: new insights and unresolved questions. International Journal of Astrobiology 2021;20:394-426. [DOI: 10.1017/s1473550421000276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Korablev OI, Belyaev DA, Dobrolenskiy YS, Trokhimovskiy AY, Kalinnikov YK. Acousto-optic tunable filter spectrometers in space missions [Invited]. Appl Opt 2018;57:C103-19. [PMID: 29714213 DOI: 10.1364/AO.57.00C103] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
99 Konstantinidis M, Lalla E, Daly M, Lopez-reyes G, Stromberg J, Cote K, Cloutis E. Elemental estimation of terrestrial analogues from the CanMars rover field campaign using LiRS: Implications for detecting silica-rich deposits on Mars. Icarus 2021;358:114113. [DOI: 10.1016/j.icarus.2020.114113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
100 Berliner AJ, Hilzinger JM, Abel AJ, Mcnulty MJ, Makrygiorgos G, Averesch NJH, Sen Gupta S, Benvenuti A, Caddell DF, Cestellos-blanco S, Doloman A, Friedline S, Ho D, Gu W, Hill A, Kusuma P, Lipsky I, Mirkovic M, Luis Meraz J, Pane V, Sander KB, Shi F, Skerker JM, Styer A, Valgardson K, Wetmore K, Woo S, Xiong Y, Yates K, Zhang C, Zhen S, Bugbee B, Clark DS, Coleman-derr D, Mesbah A, Nandi S, Waymouth RM, Yang P, Criddle CS, Mcdonald KA, Seefeldt LC, Menezes AA, Arkin AP. Towards a Biomanufactory on Mars. Front Astron Space Sci 2021;8:711550. [DOI: 10.3389/fspas.2021.711550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
101 Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. Astrobiology 2021;21:673-91. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
102 Cady SL, Skok JR, Gulick VG, Berger JA, Hinman NW. Siliceous Hot Spring Deposits: Why They Remain Key Astrobiological Targets. From Habitability to Life on Mars. Elsevier; 2018. pp. 179-210. [DOI: 10.1016/b978-0-12-809935-3.00007-4] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
103 Perez Canora C, Rodriguez JA, Musso F, Moral A, Seoane L, Zafra J, Rodriguez PR, Ibarmia S, Benito M, Veneranda M, Manrique JA, Ramos G, Charro E, Lopez JM, González MÁ, Hutchinson I, Prieto‐ballesteros O, Rull F, Lopez‐reyes G. The Raman Laser Spectrometer: A performance study using ExoMars representative crushed samples. J Raman Spectroscopy. [DOI: 10.1002/jrs.6284] [Reference Citation Analysis]
104 Globus N, Blandford RD. The Chiral Puzzle of Life. ApJ 2020;895:L11. [DOI: 10.3847/2041-8213/ab8dc6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
105 Pilles EA, Cross M, Caudill C, Francis R, Osinski G, Newman J, Battler M, Bourassa M, Haltigin T, Hipkin V, Kerrigan M, Mclennan S, Silber E, Williford K. Exploring new models for improving planetary rover operations efficiency through the 2016 CanMars Mars Sample Return (MSR) analogue deployment. Planetary and Space Science 2019;165:250-9. [DOI: 10.1016/j.pss.2018.10.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
106 Rull F, Maurice S, Hutchinson I, Moral A, Perez C, Diaz C, Colombo M, Belenguer T, Lopez-reyes G, Sansano A, Forni O, Parot Y, Striebig N, Woodward S, Howe C, Tarcea N, Rodriguez P, Seoane L, Santiago A, Rodriguez-prieto JA, Medina J, Gallego P, Canchal R, Santamaría P, Ramos G, Vago JL, on behalf of the Rls Team. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars. Astrobiology 2017;17:627-54. [DOI: 10.1089/ast.2016.1567] [Cited by in Crossref: 92] [Cited by in F6Publishing: 25] [Article Influence: 18.4] [Reference Citation Analysis]
107 Lalla EA, Konstantinidis M, Lopez‐reyes G, Daly MG, Veneranda M, Manrique JA, Groemer G, Vago JL, Rull F. Raman characterization of terrestrial analogs from the AMADEE‐18 astronaut simulated mission using the ExoMars RLS simulator: Implications for Mars. J Raman Spectrosc 2020;51:2525-35. [DOI: 10.1002/jrs.6023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
108 Demaret L, Hutchinson IB, Eppe G, Malherbe C. Quantitative analysis of binary and ternary organo-mineral solid dispersions by Raman spectroscopy for robotic planetary exploration missions on Mars. Analyst 2021;146:7306-19. [PMID: 34755725 DOI: 10.1039/d1an01514a] [Reference Citation Analysis]
109 Bell JF 3rd, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB, Winhold A, Hayes AG, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton JB, Cluff N, Deen RG, Betts B, Cloutis E, Coates AJ, Colaprete A, Edgett KS, Ehlmann BL, Fagents S, Grotzinger JP, Hardgrove C, Herkenhoff KE, Horgan B, Jaumann R, Johnson JR, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice MS, Robinson MS, Schmitz N, Sullivan R, Wolff MJ. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Sci Rev 2021;217:24. [PMID: 33612866 DOI: 10.1007/s11214-020-00755-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
110 Siljeström S, Li X, Brinckerhoff W, van Amerom F, Cady SL. ExoMars Mars Organic Molecule Analyzer (MOMA) Laser Desorption/Ionization Mass Spectrometry (LDI-MS) Analysis of Phototrophic Communities from a Silica-Depositing Hot Spring in Yellowstone National Park, USA. Astrobiology 2021. [PMID: 33733826 DOI: 10.1089/ast.2020.2368] [Reference Citation Analysis]
111 Mißbach H, Schmidt BC, Duda J, Lünsdorf NK, Goetz W, Thiel V. Assessing the diversity of lipids formed via Fischer-Tropsch-type reactions. Organic Geochemistry 2018;119:110-21. [DOI: 10.1016/j.orggeochem.2018.02.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
112 Tan J, Sephton MA. Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation. Astrobiology 2020;20:53-72. [PMID: 31755737 DOI: 10.1089/ast.2019.2046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
113 Ruiz-Galende P, Fernández G, Torre-Fdez I, Aramendia J, Gomez-Nubla L, García-Florentino C, Castro K, Arana G, Madariaga JM. Characterization of sedimentary and volcanic rocks in Armintza outcrop (Biscay, Spain) and its implication for Oxia Planum (Mars) exploration. Spectrochim Acta A Mol Biomol Spectrosc 2021;251:119443. [PMID: 33485243 DOI: 10.1016/j.saa.2021.119443] [Reference Citation Analysis]
114 Lingam M, Dong C, Fang X, Jakosky BM, Loeb A. The Propitious Role of Solar Energetic Particles in the Origin of Life. ApJ 2018;853:10. [DOI: 10.3847/1538-4357/aa9fef] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 4.8] [Reference Citation Analysis]