BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patel CN, Jani SP, Jaiswal DG, Kumar SP, Mangukia N, Parmar RM, Rawal RM, Pandya HA. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Sci Rep 2021;11:20295. [PMID: 34645849 DOI: 10.1038/s41598-021-99165-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Mengist HM, Khalid Z, Adane F. In silico Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Thymus schimperi. Adv Appl Bioinform Chem 2023;16:1-13. [PMID: 36699952 DOI: 10.2147/AABC.S393084] [Reference Citation Analysis]
2 Lü X, Feng C, Lü R, Wei X, Fan S, Yan M, Zhu X, Zhang Z, Yang Z. Identification of potential inhibitors of omicron variant of SARS-Cov-2 RBD based virtual screening, MD simulation, and DFT. Front Chem 2022;10:1063374. [PMID: 36569957 DOI: 10.3389/fchem.2022.1063374] [Reference Citation Analysis]
3 Gumede NJ. Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors. Molecules 2022;27. [PMID: 36500659 DOI: 10.3390/molecules27238569] [Reference Citation Analysis]
4 Patel CN, Jani SP, Prasanth Kumar S, Modi KM, Kumar Y. Computational investigation of natural compounds as potential main protease (M(pro)) inhibitors for SARS-CoV-2 virus. Comput Biol Med 2022;151:106318. [PMID: 36423529 DOI: 10.1016/j.compbiomed.2022.106318] [Reference Citation Analysis]
5 Pedroni L, Dellafiora L, Varrà MO, Galaverna G, Ghidini S. In silico study on the Hepatitis E virus RNA Helicase and its inhibition by silvestrol, rocaglamide and other flavagline compounds. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-19818-w] [Reference Citation Analysis]
6 Manish M, Mishra S, Anand A, Subbarao N. Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106125] [Reference Citation Analysis]
7 Mustafa S, Alomair LA, Hussein M. In Silico Analysis Using SARS-CoV-2 Main Protease and a Set of Phytocompounds to Accelerate the Development of Therapeutic Components against COVID-19. Processes 2022;10:1397. [DOI: 10.3390/pr10071397] [Reference Citation Analysis]
8 Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022;122:11287-368. [PMID: 35594413 DOI: 10.1021/acs.chemrev.1c00965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
9 Ruchawapol C, Fu WW, Xu HX. A review on computational approaches that support the researches on traditional Chinese medicines (TCM) against COVID-19. Phytomedicine 2022;104:154324. [PMID: 35841663 DOI: 10.1016/j.phymed.2022.154324] [Reference Citation Analysis]
10 Phong NV, Trang NM, Quyen CT, Anh HLT, Vinh LB. SARS-CoV-2 main protease and papain-like protease inhibition by abietane-type diterpenes isolated from the branches of Glyptostrobus pensilis using molecular docking studies. Nat Prod Res 2022;:1-8. [PMID: 35021907 DOI: 10.1080/14786419.2022.2025801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]