BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sindi A, Chawn MVB, Hernandez ME, Green K, Islam MK, Locher C, Hammer K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Sci Rep 2019;9:17666. [PMID: 31776432 DOI: 10.1038/s41598-019-54217-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022;11:975. [DOI: 10.3390/antibiotics11070975] [Reference Citation Analysis]
2 Chhawchharia A, Haines RR, Green KJ, Barnett TC, Bowen AC, Hammer KA. In vitro antibacterial activity of Western Australian honeys, and manuka honey, against bacteria implicated in impetigo. Complement Ther Clin Pract 2022;49:101640. [PMID: 35868137 DOI: 10.1016/j.ctcp.2022.101640] [Reference Citation Analysis]
3 Green KJ, Islam MK, Lawag I, Locher C, Hammer KA. Honeys derived from plants of the coastal sandplains of Western Australia: antibacterial and antioxidant activity, and other characteristics. Journal of Apicultural Research. [DOI: 10.1080/00218839.2022.2073953] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Islam MK, Lawag IL, Sostaric T, Ulrich E, Ulrich D, Dewar T, Lim LY, Locher C. Australian Honeypot Ant (Camponotus inflatus) Honey-A Comprehensive Analysis of the Physiochemical Characteristics, Bioactivity, and HPTLC Profile of a Traditional Indigenous Australian Food. Molecules 2022;27:2154. [PMID: 35408553 DOI: 10.3390/molecules27072154] [Reference Citation Analysis]
5 Islam MK, Lawag IL, Green KJ, Sostaric T, Hammer KA, Lim LY, Locher C. An investigation of the suitability of melissopalynology to authenticate Jarrah honey. Current Research in Food Science 2022. [DOI: 10.1016/j.crfs.2022.02.014] [Reference Citation Analysis]
6 Masoura M, Milner MT, Overton TW, Gkatzionis K, Lund PA. Use of Transposon Directed Insertion-Site Sequencing to Probe the Antibacterial Mechanism of a Model Honey on E. coli K-12. Front Microbiol 2022;12:803307. [DOI: 10.3389/fmicb.2021.803307] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Majtan J, Bucekova M, Kafantaris I, Szweda P, Hammer K, Mossialos D. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science & Technology 2021;118:870-86. [DOI: 10.1016/j.tifs.2021.11.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of Honey in Advanced Wound Care. Molecules 2021;26:4784. [PMID: 34443372 DOI: 10.3390/molecules26164784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
9 Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021;50:1587-616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
10 Kafantaris I, Tsadila C, Nikolaidis M, Tsavea E, Dimitriou TG, Iliopoulos I, Amoutzias GD, Mossialos D. Transcriptomic Analysis of Pseudomonas aeruginosa Response to Pine Honey via RNA Sequencing Indicates Multiple Mechanisms of Antibacterial Activity. Foods 2021;10:936. [PMID: 33923242 DOI: 10.3390/foods10050936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
11 Brudzynski K, Sjaarda CP. Colloidal structure of honey and its influence on antibacterial activity. Compr Rev Food Sci Food Saf 2021;20:2063-80. [PMID: 33569893 DOI: 10.1111/1541-4337.12720] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
12 Guttentag A, Krishnakumar K, Cokcetin N, Harry E, Carter D. Factors affecting the production and measurement of hydrogen peroxide in honey samples. Access Microbiol 2021;3:000198. [PMID: 34151153 DOI: 10.1099/acmi.0.000198] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Proaño A, Coello D, Villacrés-granda I, Ballesteros I, Debut A, Vizuete K, Brenciani A, Álvarez-suarez JM. The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. LWT 2021;136:110379. [DOI: 10.1016/j.lwt.2020.110379] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
14 Shirlaw O, Billah Z, Attar B, Hughes L, Qasaymeh RM, Seidel V, Efthimiou G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics (Basel) 2020;9:E911. [PMID: 33334017 DOI: 10.3390/antibiotics9120911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
15 Green KJ, Dods K, Hammer KA. Development and validation of a new microplate assay that utilises optical density to quantify the antibacterial activity of honeys including Jarrah, Marri and Manuka. PLoS One 2020;15:e0243246. [PMID: 33296391 DOI: 10.1371/journal.pone.0243246] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Pleeging CCF, Coenye T, Mossialos D, de Rooster H, Chrysostomou D, Wagener FADTG, Cremers NAJ. Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics (Basel) 2020;9:E866. [PMID: 33291554 DOI: 10.3390/antibiotics9120866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
17 Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics (Basel) 2020;9:E774. [PMID: 33158063 DOI: 10.3390/antibiotics9110774] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 8.5] [Reference Citation Analysis]
18 Nolan VC, Harrison J, Wright JEE, Cox JAG. Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics (Basel) 2020;9:E766. [PMID: 33142845 DOI: 10.3390/antibiotics9110766] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kot B, Sytykiewicz H, Sprawka I, Witeska M. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Sci Rep 2020;10:13552. [PMID: 32782291 DOI: 10.1038/s41598-020-70666-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
20 Tang JS, Compton BJ, Marshall A, Anderson R, Li Y, van der Woude H, Hermans IF, Painter GF, Gasser O. Mānuka honey-derived methylglyoxal enhances microbial sensing by mucosal-associated invariant T cells. Food Funct 2020;11:5782-7. [PMID: 32618294 DOI: 10.1039/d0fo01153c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
21 Guo N, Zhao L, Zhao Y, Li Q, Xue X, Wu L, Gomez Escalada M, Wang K, Peng W. Comparison of the Chemical Composition and Biological Activity of Mature and Immature Honey: An HPLC/QTOF/MS-Based Metabolomic Approach. J Agric Food Chem 2020;68:4062-71. [PMID: 32186876 DOI: 10.1021/acs.jafc.9b07604] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]