BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021;589:608-14. [PMID: 33408413 DOI: 10.1038/s41586-020-03086-7] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Benedicto I, Chen X, Bergo MO, Andrés V. Progeria: a perspective on potential drug targets and treatment strategies. Expert Opinion on Therapeutic Targets. [DOI: 10.1080/14728222.2022.2078699] [Reference Citation Analysis]
2 S Zibitt M, Hartford CCR, Lal A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol 2021;:1-10. [PMID: 33685382 DOI: 10.1080/15476286.2021.1899500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Rieckher M, Garinis GA, Schumacher B. Molecular pathology of rare progeroid diseases. Trends Mol Med 2021:S1471-4914(21)00178-7. [PMID: 34272172 DOI: 10.1016/j.molmed.2021.06.011] [Reference Citation Analysis]
4 Schreurs J, Sacchetto C, Colpaert RMW, Vitiello L, Rampazzo A, Calore M. Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases. Int J Mol Sci 2021;22:10985. [PMID: 34681646 DOI: 10.3390/ijms222010985] [Reference Citation Analysis]
5 Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022;56:125-46. [DOI: 10.1134/s0026893322020091] [Reference Citation Analysis]
6 Quintana-bustamante O, Fañanas-baquero S, Dessy-rodriguez M, Ojeda-pérez I, Segovia J. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022;13:848261. [DOI: 10.3389/fphys.2022.848261] [Reference Citation Analysis]
7 Lin J, Wu S, Shen Q, Liu J, Huang S, Peng G, Qiao Y. Base editing-mediated perturbation of endogenous PKM1/2 splicing facilitates isoform-specific functional analysis in vitro and in vivo. Cell Prolif 2021;54:e13096. [PMID: 34240779 DOI: 10.1111/cpr.13096] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Caruso SM, Quinn PM, da Costa BL, Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation 2022;132:e158287. [DOI: 10.1172/jci158287] [Reference Citation Analysis]
9 Sánchez-López A, Espinós-Estévez C, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Fanjul V, Riquelme-Borja R, Hamczyk MR, Macías Á, Del Campo L, Camafeita E, Vázquez J, Barkaway A, Rolas L, Nourshargh S, Dorado B, Benedicto I, Andrés V. Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome. Circulation 2021;144:1777-94. [PMID: 34694158 DOI: 10.1161/CIRCULATIONAHA.121.055313] [Reference Citation Analysis]
10 Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen HM, Colace TV, Ganey JD, Gangopadhyay SA, Garrity R, Kasiewicz LN, Lavoie J, Madsen JA, Matsumoto Y, Mazzola AM, Nasrullah YS, Nneji J, Ren H, Sanjeev A, Shay M, Stahley MR, Fan SHY, Tam YK, Gaudelli NM, Ciaramella G, Stolz LE, Malyala P, Cheng CJ, Rajeev KG, Rohde E, Bellinger AM, Kathiresan S. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021;593:429-34. [PMID: 34012082 DOI: 10.1038/s41586-021-03534-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 21.0] [Reference Citation Analysis]
11 Whisenant D, Lim K, Revêchon G, Yao H, Bergo MO, Machtel P, Kim JS, Eriksson M. Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat Commun 2022;13:3068. [PMID: 35654881 DOI: 10.1038/s41467-022-30800-y] [Reference Citation Analysis]
12 Doevendans PA, Kupatt C, Giacca M, Glijnis P. Will our cardiomyopathy patients accept gene therapy? Neth Heart J 2022. [PMID: 35235143 DOI: 10.1007/s12471-022-01665-z] [Reference Citation Analysis]
13 Piotter E, Mcclements ME, Maclaren RE. The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Front Genet 2022;12:814131. [DOI: 10.3389/fgene.2021.814131] [Reference Citation Analysis]
14 Jordan B. [Towards gene therapy for Progeria ?]. Med Sci (Paris) 2021;37:413-6. [PMID: 33908864 DOI: 10.1051/medsci/2021054] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Molecular Cell 2022;82:348-88. [DOI: 10.1016/j.molcel.2021.12.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
16 Montoliu L. WHO: Are You Ready for Human Genome Editing? CRISPR J 2021;4:464-6. [PMID: 34406034 DOI: 10.1089/crispr.2021.29133.lmo] [Reference Citation Analysis]
17 Hu Y, Li W. Development and Application of CRISPR-Cas Based Tools. Front Cell Dev Biol 2022;10:834646. [PMID: 35445018 DOI: 10.3389/fcell.2022.834646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022. [PMID: 35145236 DOI: 10.1038/s41569-021-00669-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Gordon LB, Tuminelli K, Andrés V, Campisi J, Kieran MW, Doucette L, Gordon AS. The progeria research foundation 10th international scientific workshop; researching possibilities, ExTENding lives - webinar version scientific summary. Aging (Albany NY) 2021;13:9143-51. [PMID: 33735109 DOI: 10.18632/aging.202835] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022:S0168-3659(22)00080-3. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Reference Citation Analysis]
21 Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-Molecule Therapeutic Perspectives for the Treatment of Progeria. Int J Mol Sci 2021;22:7190. [PMID: 34281245 DOI: 10.3390/ijms22137190] [Reference Citation Analysis]
22 van Essen M, Riepsaame J, Jacob J. CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR J 2021;4:634-55. [PMID: 34582693 DOI: 10.1089/crispr.2021.0063] [Reference Citation Analysis]
23 Kim B, Woo T, Kang S, Park S, Park B. Splicing Variants, Protein-Protein Interactions, and Drug Targeting in Hutchinson-Gilford Progeria Syndrome and Small Cell Lung Cancer. Genes 2022;13:165. [DOI: 10.3390/genes13020165] [Reference Citation Analysis]
24 Nishiyama T, Bassel-Duby R, Olson EN. Toward CRISPR Therapies for Cardiomyopathies. Circulation 2021;144:1525-7. [PMID: 34748394 DOI: 10.1161/CIRCULATIONAHA.121.057203] [Reference Citation Analysis]
25 Gete YG, Koblan LW, Mao X, Trappio M, Mahadik B, Fisher JP, Liu DR, Cao K. Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell 2021;20:e13388. [PMID: 34086398 DOI: 10.1111/acel.13388] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
26 Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, Levy JM, Mercer JAM, Liu DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2021. [PMID: 34887556 DOI: 10.1038/s41587-021-01133-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Ma S, Jiang W, Liu X, Lu WJ, Qi T, Wei J, Wu F, Chang Y, Zhang S, Song Y, Bai R, Wang J, Lee AS, Zhang H, Wang Y, Lan F. Efficient Correction of a Hypertrophic Cardiomyopathy Mutation by ABEmax-NG. Circ Res 2021;129:895-908. [PMID: 34525843 DOI: 10.1161/CIRCRESAHA.120.318674] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nat Rev Mater. [DOI: 10.1038/s41578-021-00396-8] [Reference Citation Analysis]
29 Gladka MM, Baker AH. Jumping on base editing to repair the diseased cardiovascular system in vivo. Cardiovasc Res 2021;117:e46-8. [PMID: 33749783 DOI: 10.1093/cvr/cvab057] [Reference Citation Analysis]
30 Zhang SL, Lin SZ, Zhou YQ, Wang WQ, Li JY, Wang C, Pang QM. Clinical manifestations and gene analysis of Hutchinson-Gilford progeria syndrome: A case report. World J Clin Cases 2022; 10(15): 5018-5024 [DOI: 10.12998/wjcc.v10.i15.5018] [Reference Citation Analysis]
31 Yuan Q, Gao X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat Commun 2022;13:2771. [PMID: 35589728 DOI: 10.1038/s41467-022-30514-1] [Reference Citation Analysis]
32 Musunuru K. Moving toward genome-editing therapies for cardiovascular diseases. J Clin Invest 2022;132:e148555. [PMID: 34981785 DOI: 10.1172/JCI148555] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Böck D, Rothgangl T, Villiger L, Schmidheini L, Matsushita M, Mathis N, Ioannidi E, Rimann N, Grisch-Chan HM, Kreutzer S, Kontarakis Z, Kopf M, Thöny B, Schwank G. In vivo prime editing of a metabolic liver disease in mice. Sci Transl Med 2022;14:eabl9238. [PMID: 35294257 DOI: 10.1126/scitranslmed.abl9238] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Zhu XX, Pan JS, Lin T, Yang YC, Huang QY, Yang SP, Qu ZX, Lin ZS, Wen JC, Yan AF, Feng J, Liu L, Zhang XL, Lu JH, Tang DS. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnol Lett 2022. [PMID: 34997407 DOI: 10.1007/s10529-021-03214-x] [Reference Citation Analysis]
35 Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol 2022;13:45. [PMID: 35674844 DOI: 10.1007/s12672-022-00509-x] [Reference Citation Analysis]
36 Schubert I. Boon and Bane of DNA Double-Strand Breaks. Int J Mol Sci 2021;22:5171. [PMID: 34068283 DOI: 10.3390/ijms22105171] [Reference Citation Analysis]
37 Zhang S, Zhao S, Han X, Zhang Y, Jin X, Yuan Y, Zhao X, Luo Y, Zhou Y, Gao Y, Yu H, Sun D, Xu W, Yan S, Gong Y, Li Y. Lnc-C2orf63-4-1 Confers VSMC Homeostasis and Prevents Aortic Dissection Formation via STAT3 Interaction. Front Cell Dev Biol 2021;9:792051. [PMID: 34938738 DOI: 10.3389/fcell.2021.792051] [Reference Citation Analysis]
38 Šikrová D, Cadar VA, Ariyurek Y, Laros JFJ, Balog J, van der Maarel SM. Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids 2021;25:342-54. [PMID: 34484861 DOI: 10.1016/j.omtn.2021.05.020] [Reference Citation Analysis]
39 Kirby TJ, Dupont-Versteegden EE. Cross Talk proposal: Myonuclei are lost with ageing and atrophy. J Physiol 2022. [PMID: 35388910 DOI: 10.1113/JP282380] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021;29:3107-24. [PMID: 34509669 DOI: 10.1016/j.ymthe.2021.09.002] [Reference Citation Analysis]
41 Lin P, Jiang J, Wu M. CRISPR base editor treats premature-aging syndrome. Signal Transduct Target Ther 2021;6:158. [PMID: 33863871 DOI: 10.1038/s41392-021-00576-6] [Reference Citation Analysis]
42 Zhang X, Jin H, Huang X, Chaurasiya B, Dong D, Shanley TP, Zhao YY. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA. Cell Rep 2022;38:110196. [PMID: 34986352 DOI: 10.1016/j.celrep.2021.110196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
43 Wang L, Xue W, Zhang H, Gao R, Qiu H, Wei J, Zhou L, Lei YN, Wu X, Li X, Liu C, Wu J, Chen Q, Ma H, Huang X, Cai C, Zhang Y, Yang B, Yin H, Yang L, Chen J. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat Cell Biol 2021;23:552-63. [PMID: 33972728 DOI: 10.1038/s41556-021-00671-4] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
44 Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021;:236772211051842. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Reference Citation Analysis]
45 Benedicto I, Dorado B, Andrés V. Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021;10:1157. [PMID: 34064612 DOI: 10.3390/cells10051157] [Reference Citation Analysis]
46 Cereseto A, Cradick TJ, Davies K. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR J 2021;4:166-8. [PMID: 33876950 DOI: 10.1089/crispr.2021.29125.kda] [Reference Citation Analysis]
47 Cully M. In vivo base editing rescues progeria in mice. Nat Rev Drug Discov 2021;20:98. [PMID: 33441999 DOI: 10.1038/d41573-021-00013-x] [Reference Citation Analysis]
48 Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci 2021:S0165-6147(21)00215-7. [PMID: 34952739 DOI: 10.1016/j.tips.2021.10.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Eberherr AC, Maaske A, Wolf C, Giesert F, Berutti R, Rusha E, Pertek A, Kastlmeier MT, Voss C, Plummer M, Sayed A, Graf E, Effner R, Volz T, Drukker M, Strom TM, Meitinger T, Stoeger T, Buyx AM, Hagl B, Renner ED. Rescue of STAT3 Function in Hyper-IgE Syndrome Using Adenine Base Editing. CRISPR J 2021;4:178-90. [PMID: 33876960 DOI: 10.1089/crispr.2020.0111] [Reference Citation Analysis]
50 Choi EH, Suh S, Foik AT, Leinonen H, Newby GA, Gao XD, Banskota S, Hoang T, Du SW, Dong Z, Raguram A, Kohli S, Blackshaw S, Lyon DC, Liu DR, Palczewski K. In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nat Commun 2022;13:1830. [PMID: 35383196 DOI: 10.1038/s41467-022-29490-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB, Osborn MJ, Musunuru K, Palczewski K, Liu DR. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022;185:250-265.e16. [PMID: 35021064 DOI: 10.1016/j.cell.2021.12.021] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 24.0] [Reference Citation Analysis]
52 Fields E, Vaughan E, Tripu D, Lim I, Shrout K, Conway J, Salib N, Lee Y, Dhamsania A, Jacobsen M, Woo A, Xue H, Cao K. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021;70:101385. [PMID: 34098113 DOI: 10.1016/j.arr.2021.101385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021;184:1081-1097.e19. [PMID: 33606978 DOI: 10.1016/j.cell.2021.01.041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
54 Carvill GL, Matheny T, Hesselberth J, Demarest S. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics 2021;18:1500-14. [PMID: 34648141 DOI: 10.1007/s13311-021-01137-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Revêchon G, Whisenant D, Eriksson M. Splice-inhibition therapy targets progeria. Nat Med 2021;27:377-9. [PMID: 33707774 DOI: 10.1038/s41591-021-01267-z] [Reference Citation Analysis]
56 Wrighton KH. Fixing an ageing mutation. Nat Rev Genet 2021;22:134-5. [PMID: 33437031 DOI: 10.1038/s41576-021-00327-x] [Reference Citation Analysis]
57 Musunuru K. Adenine base editing to treat progeria syndrome and extend the lifespan. J Cardiovasc Aging 2021;1:8. [PMID: 34308436 DOI: 10.20517/jca.2021.10] [Reference Citation Analysis]
58 Pavez-Giani MG, Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021;9:800529. [PMID: 35083221 DOI: 10.3389/fcell.2021.800529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Philippidis A. Billion Dollar Trio: Sana, Beam, Tessera Financings Raise $1.1B. Hum Gene Ther 2021;32:243-6. [PMID: 33750220 DOI: 10.1089/hum.2021.29153.bfs] [Reference Citation Analysis]
60 Zhang G, Liu Y, Huang S, Qu S, Cheng D, Yao Y, Ji Q, Wang X, Huang X, Liu J. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat Commun 2022;13:1856. [PMID: 35387980 DOI: 10.1038/s41467-022-29507-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Benarroch L, Cohen E, Atalaia A, Ben Yaou R, Bonne G, Bertrand AT. Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021;10:4834. [PMID: 34768351 DOI: 10.3390/jcm10214834] [Reference Citation Analysis]
62 Cervantes-Gracia K, Gramalla-Schmitz A, Weischedel J, Chahwan R. APOBECs orchestrate genomic and epigenomic editing across health and disease. Trends Genet 2021:S0168-9525(21)00193-1. [PMID: 34353635 DOI: 10.1016/j.tig.2021.07.003] [Reference Citation Analysis]
63 Wu S, Li L, Li M, Sun S, Zhao Y, Xue X, Chen F, Zhong J, Guo J, Qu Q, Wang X, Liu Z, Qiao Y. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications In Vitro and In Vivo. Front Cell Dev Biol 2022;10:809922. [PMID: 35300420 DOI: 10.3389/fcell.2022.809922] [Reference Citation Analysis]
64 Mao X, Xiong Z, Xue H, Brown MA, Gete YG, Yu R, Sun L, Cao K. Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome. IJMS 2022;23:5499. [DOI: 10.3390/ijms23105499] [Reference Citation Analysis]
65 Coppedè F. Mutations Involved in Premature-Ageing Syndromes. Appl Clin Genet 2021;14:279-95. [PMID: 34103969 DOI: 10.2147/TACG.S273525] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Liu N, Olson EN. CRISPR Modeling and Correction of Cardiovascular Disease. Circ Res 2022;130:1827-50. [PMID: 35679361 DOI: 10.1161/CIRCRESAHA.122.320496] [Reference Citation Analysis]
67 Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021;8:760140. [PMID: 34805315 DOI: 10.3389/fcvm.2021.760140] [Reference Citation Analysis]
68 Brown SDM. Advances in mouse genetics for the study of human disease. Hum Mol Genet 2021:ddab153. [PMID: 34089057 DOI: 10.1093/hmg/ddab153] [Reference Citation Analysis]
69 Davies K. Precision Chemistry on the Genome: Interview with David R. Liu. Hum Gene Ther 2021;32:237-42. [PMID: 33750219 DOI: 10.1089/hum.2021.29151.int] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
70 Ryan DE, Diamant-Levi T, Steinfeld I, Taussig D, Visal-Shah S, Thakker S, Lunstad BD, Kaiser RJ, McCaffrey R, Ortiz M, Townsend J, Welch WRW, Singh M, Curry B, Dellinger DJ, Bruhn L. Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors. Biochemistry 2022. [PMID: 35436085 DOI: 10.1021/acs.biochem.1c00768] [Reference Citation Analysis]
71 Saxena S, Shukla D. The pursuit of therapy for progeria. Aging (Albany NY) 2021;13:15697-8. [PMID: 34176790 DOI: 10.18632/aging.203254] [Reference Citation Analysis]
72 Pao PC, Tsai LH. Histone Deacetylases 1 and 2 in Memory Function. ACS Chem Neurosci 2022;13:848-58. [PMID: 35263084 DOI: 10.1021/acschemneuro.1c00775] [Reference Citation Analysis]