1 |
Fan Y, Ren G, Cui Y, Liu H, Li S, Tian Y, Wang G, Peng C, Wu D, Wang Y. Peptide-based hydrogel for enhanced bone repair. Materials & Design 2023. [DOI: 10.1016/j.matdes.2023.111862] [Reference Citation Analysis]
|
2 |
Laurano R, Boffito M, Cassino C, Midei L, Pappalardo R, Chiono V, Ciardelli G. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry. Materials (Basel) 2023;16. [PMID: 36903139 DOI: 10.3390/ma16052024] [Reference Citation Analysis]
|
3 |
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023;211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Reference Citation Analysis]
|
4 |
Bakhtiary N, Ghalandari B, Ghorbani F, Varma SN, Liu C. Advances in Peptide-Based Hydrogel for Tissue Engineering. Polymers (Basel) 2023;15. [PMID: 36904309 DOI: 10.3390/polym15051068] [Reference Citation Analysis]
|
5 |
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022;15:5871. [DOI: 10.3390/ma15175871] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
6 |
Grosskopf AK, Mann JL, Baillet J, Lopez Hernandez H, Autzen AAA, Yu AC, Appel EA. Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer–Nanoparticle Interactions. Macromolecules. [DOI: 10.1021/acs.macromol.2c00649] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
7 |
Ghanta RK, Pugazenthi A, Zhao Y, Sylvester C, Wall MJ Jr, Mazur RA, Russell LN, Lampe KJ. Influence of Supraphysiologic Biomaterial Stiffness on Ventricular Mechanics and Myocardial Infarct Reinforcement. Acta Biomater 2022:S1742-7061(22)00400-7. [PMID: 35820592 DOI: 10.1016/j.actbio.2022.07.006] [Reference Citation Analysis]
|
8 |
Correa S, Grosskopf AK, Klich JH, Lopez Hernandez H, Appel EA. Injectable liposome-based supramolecular hydrogels for the programmable release of multiple protein drugs. Matter 2022. [DOI: 10.1016/j.matt.2022.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Mazur RA, Yokosawa R, Vandevord PJ, Lampe KJ. The Need for Tissue Engineered Models to Facilitate the Study of Oligodendrocyte Progenitor Cells in Traumatic Brain Injury and Repair. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100378] [Reference Citation Analysis]
|
10 |
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022;140:43-75. [PMID: 34710626 DOI: 10.1016/j.actbio.2021.10.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
|
11 |
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020;16:10065-95. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
|
12 |
Siboro SAP, Anugrah DSB, Ramesh K, Park SH, Kim HR, Lim KT. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr Polym 2021;260:117779. [PMID: 33712135 DOI: 10.1016/j.carbpol.2021.117779] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
|
13 |
Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest-Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomater Sci Eng 2021. [PMID: 33891397 DOI: 10.1021/acsbiomaterials.1c00275] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
14 |
Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest-host supramolecular assembly of injectable hydrogel fibers for cell encapsulation.. [DOI: 10.1101/2021.02.26.430926] [Reference Citation Analysis]
|
15 |
Chen R, Xu C, Lei Y, Liu H, Zhu Y, Zhang J, Xu L. Facile construction of a family of supramolecular gels with good levofloxacin hydrochloride loading capacity. RSC Adv 2021;11:12641-8. [DOI: 10.1039/d1ra00809a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
16 |
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020;16:1404-54. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Cited by in Crossref: 174] [Cited by in F6Publishing: 179] [Article Influence: 58.0] [Reference Citation Analysis]
|
17 |
Nutan B, Chandel AKS, Biswas A, Kumar A, Yadav A, Maiti P, Jewrajka SK. Gold Nanoparticle Promoted Formation and Biological Properties of Injectable Hydrogels. Biomacromolecules 2020;21:3782-94. [DOI: 10.1021/acs.biomac.0c00889] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
18 |
Ghanta RK, Zhao Y, Pugazenthi A, Wall MJ, Russell LN, Lampe KJ. Influence of Supraphysiologic Biomaterial Stiffness on Ventricular Mechanics and Myocardial Infarct Reinforcement.. [DOI: 10.1101/2020.05.20.107276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
19 |
Unal DB, Caliari SR, Lampe KJ. Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Res Bull 2019;152:159-74. [PMID: 31306690 DOI: 10.1016/j.brainresbull.2019.07.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|