BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015;1:726-39. [DOI: 10.1021/acsbiomaterials.5b00245] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Learmonth DA, Costa PM, Veloso TR, Cunha CB, Cautela MP, Correia C, Vallejo MC, Sousa RA. Synthesis and biological evaluation of a bioinspired, tissue-adhesive gellan gum-based hydrogel designed for minimally invasive delivery and retention of chondrogenic cells. Biomater Sci 2020;8:3697-711. [PMID: 32483582 DOI: 10.1039/d0bm00286k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Zhou J, Zhang S, Song X, Wei R, Zhang X, Zhao W, Zhao C. Three-Dimensional Graphene Oxide Skeleton Guided Poly(acrylic Acid) Composite Hydrogel Particles with Hierarchical Pore Structure for Hemoperfusion. ACS Biomater Sci Eng 2019;5:3987-4001. [DOI: 10.1021/acsbiomaterials.9b00712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021;12:755230. [PMID: 34603064 DOI: 10.3389/fphar.2021.755230] [Reference Citation Analysis]
4 Vilela CA, Correia C, da Silva Morais A, Santos TC, Gertrudes AC, Moreira ES, Frias AM, Learmonth DA, Oliveira P, Oliveira JM, Sousa RA, Espregueira-mendes JD, Reis RL. In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair*: IN VITRO AND IN VIVO PERFORMANCE OF METHACRYLATED GG HYDROGEL FORMULATIONS. J Biomed Mater Res 2018;106:1987-96. [DOI: 10.1002/jbm.a.36406] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
5 Xu J, Ren X, Gao G. Salt-inactive hydrophobic association hydrogels with fatigue resistant and self-healing properties. Polymer 2018;150:194-203. [DOI: 10.1016/j.polymer.2018.07.045] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
6 González-Domínguez JM, Martín C, Durá ÓJ, Merino S, Vázquez E. Smart Hybrid Graphene Hydrogels: A Study of the Different Responses to Mechanical Stretching Stimulus. ACS Appl Mater Interfaces 2018;10:1987-95. [PMID: 29264922 DOI: 10.1021/acsami.7b14404] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 12.7] [Reference Citation Analysis]
7 Hua Y, Xia H, Jia L, Zhao J, Zhao D, Yan X, Zhang Y, Tang S, Zhou G, Zhu L, Lin Q. Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy. Sci Adv 2021;7:eabg0628. [PMID: 34433558 DOI: 10.1126/sciadv.abg0628] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Park SH, Seo JY, Park JY, Ji YB, Kim K, Choi HS, Choi S, Kim JH, Min BH, Kim MS. An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater 2019;11. [DOI: 10.1038/s41427-019-0130-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 21] [Article Influence: 20.5] [Reference Citation Analysis]
9 da Silva Morais A, Oliveira JM, Reis RL. Small Animal Models. In: Oliveira JM, Pina S, Reis RL, San Roman J, editors. Osteochondral Tissue Engineering. Cham: Springer International Publishing; 2018. pp. 423-39. [DOI: 10.1007/978-3-319-76735-2_19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang X, Li Z, Shi T, Zhao P, An K, Lin C, Liu H. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Materials Science and Engineering: C 2017;73:21-30. [DOI: 10.1016/j.msec.2016.12.053] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
11 Rameshbabu AP, Ghosh P, Subramani E, Bankoti K, Kapat K, Datta S, Maity PP, Subramanian B, Roy S, Chaudhury K, Dhara S. Investigating the potential of human placenta-derived extracellular matrix sponges coupled with amniotic membrane-derived stem cells for osteochondral tissue engineering. J Mater Chem B 2016;4:613-25. [DOI: 10.1039/c5tb02321a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Darge HF, Andrgie AT, Tsai H, Lai J. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. International Journal of Biological Macromolecules 2019;133:545-63. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
13 de Sousa Araújo E, Domingues Stocco T, Fernandes de Sousa G, Afewerki S, Marciano FR, Alexandre Finzi Corat M, Michelle Machado de Paula M, Ferreira Cândido Lima Verde T, Cristina Moreira Silva M, Oliveira Lobo A. Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy. Colloids Surf B Biointerfaces 2021;205:111850. [PMID: 34015729 DOI: 10.1016/j.colsurfb.2021.111850] [Reference Citation Analysis]
14 You F, Wu X, Zhu N, Lei M, Eames BF, Chen X. 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering. ACS Biomater Sci Eng 2016;2:1200-10. [DOI: 10.1021/acsbiomaterials.6b00258] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
15 Antich C, Jiménez G, de Vicente J, López-Ruiz E, Chocarro-Wrona C, Griñán-Lisón C, Carrillo E, Montañez E, Marchal JA. Development of a Biomimetic Hydrogel Based on Predifferentiated Mesenchymal Stem-Cell-Derived ECM for Cartilage Tissue Engineering. Adv Healthc Mater 2021;10:e2001847. [PMID: 33646595 DOI: 10.1002/adhm.202001847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cokelaere S, Malda J, van Weeren R. Cartilage defect repair in horses: Current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach. Vet J 2016;214:61-71. [PMID: 27387728 DOI: 10.1016/j.tvjl.2016.02.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
17 Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair. ACS Biomater Sci Eng 2020;6:3464-76. [PMID: 33463160 DOI: 10.1021/acsbiomaterials.9b01939] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
18 Paxton NC, Powell SK, Woodruff MA. Biofabrication: The Future of Regenerative Medicine. Techniques in Orthopaedics 2016;31:190-203. [DOI: 10.1097/bto.0000000000000184] [Cited by in Crossref: 19] [Article Influence: 3.8] [Reference Citation Analysis]
19 You F, Chen X, Cooper DML, Chang T, Eames BF. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabrication 2018;11:015015. [PMID: 30524110 DOI: 10.1088/1758-5090/aaf44a] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 9.7] [Reference Citation Analysis]
20 Campos DFD, Philip MA, Gürzing S, Melcher C, Lin YY, Schöneberg J, Blaeser A, Theek B, Fischer H, Betsch M. Synchronized Dual Bioprinting of Bioinks and Biomaterial Inks as a Translational Strategy for Cartilage Tissue Engineering. 3D Printing and Additive Manufacturing 2019;6:63-71. [DOI: 10.1089/3dp.2018.0123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Cheng G, Li B. Nanoparticle-based photodynamic therapy: new trends in wound healing applications. Materials Today Advances 2020;6:100049. [DOI: 10.1016/j.mtadv.2019.100049] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
22 Wu X, Li W, Chen K, Zhang D, Xu L, Yang X. A tough PVA/HA/COL composite hydrogel with simple process and excellent mechanical properties. Materials Today Communications 2019;21:100702. [DOI: 10.1016/j.mtcomm.2019.100702] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
23 McDonough RC, Gilbert RM, Gleghorn JP, Price C. Targeted Gq-GPCR activation drives ER-dependent calcium oscillations in chondrocytes. Cell Calcium 2021;94:102363. [PMID: 33550208 DOI: 10.1016/j.ceca.2021.102363] [Reference Citation Analysis]
24 Pascual-Garrido C, Aisenbrey EA, Rodriguez-Fontan F, Payne KA, Bryant SJ, Goodrich LR. Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model. Am J Sports Med 2019;47:212-21. [PMID: 30481048 DOI: 10.1177/0363546518808012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
25 Faivre J, Sudre G, Montembault A, Benayoun S, Banquy X, Delair T, David L. Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. Soft Matter 2018;14:2068-76. [DOI: 10.1039/c8sm00215k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
26 Liang X, Wang X, Xu Q, Lu Y, Zhang Y, Xia H, Lu A, Zhang L. Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules 2018;19:340-52. [DOI: 10.1021/acs.biomac.7b01456] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 12.7] [Reference Citation Analysis]
27 Younas A, Gu H, Zhao Y, Zhang N. Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: A review. Int J Pharm 2021;608:121051. [PMID: 34454029 DOI: 10.1016/j.ijpharm.2021.121051] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Vilela CA, da Silva Morais A, Pina S, Oliveira JM, Correlo VM, Reis RL, Espregueira-mendes J. Clinical Trials and Management of Osteochondral Lesions. In: Oliveira JM, Pina S, Reis RL, San Roman J, editors. Osteochondral Tissue Engineering. Cham: Springer International Publishing; 2018. pp. 391-413. [DOI: 10.1007/978-3-319-76711-6_18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Gan D, Wang Z, Xie C, Wang X, Xing W, Ge X, Yuan H, Wang K, Tan H, Lu X. Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair. Adv Healthc Mater 2019;8:e1901103. [PMID: 31609095 DOI: 10.1002/adhm.201901103] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
30 Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q, Zhu L. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 2017;9:4430-4438. [PMID: 28300264 DOI: 10.1039/c7nr00352h] [Cited by in Crossref: 151] [Cited by in F6Publishing: 79] [Article Influence: 50.3] [Reference Citation Analysis]
31 DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. Adv Ther (Weinh) 2021;4:2000088. [PMID: 33709019 DOI: 10.1002/adtp.202000088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Storozhylova N, Crecente-campo J, Cabaleiro D, Lugo L, Dussouy C, Simões S, Monteiro M, Grandjean C, Alonso MJ. An In Situ Hyaluronic Acid-Fibrin Hydrogel Containing Drug-Loaded Nanocapsules for Intra-Articular Treatment of Inflammatory Joint Diseases. Regen Eng Transl Med 2020;6:201-16. [DOI: 10.1007/s40883-020-00154-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
33 Feng Q, Lin S, Zhang K, Dong C, Wu T, Huang H, Yan X, Zhang L, Li G, Bian L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater 2017;53:329-42. [PMID: 28193542 DOI: 10.1016/j.actbio.2017.02.015] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 19.5] [Reference Citation Analysis]
34 Puertas-bartolomé M, Benito-garzón L, Olmeda-lozano M. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration. In: Oliveira JM, Pina S, Reis RL, San Roman J, editors. Osteochondral Tissue Engineering. Cham: Springer International Publishing; 2018. pp. 327-55. [DOI: 10.1007/978-3-319-76711-6_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]