BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gavel PK, Dev D, Parmar HS, Bhasin S, Das AK. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl Mater Interfaces 2018;10:10729-40. [DOI: 10.1021/acsami.8b00501] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Abraham BL, Liyanage W, Nilsson BL. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Langmuir 2019;35:14939-48. [PMID: 31664849 DOI: 10.1021/acs.langmuir.9b02971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
2 Mukherjee N, Adak A, Ghosh S. Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter 2020;16:10046-64. [PMID: 32724981 DOI: 10.1039/d0sm00885k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
3 Sharma P, Kaur H, Roy S. Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior. ACS Biomater Sci Eng 2019;5:6497-510. [DOI: 10.1021/acsbiomaterials.9b01115] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
4 Chivers PRA, Dookie RS, Gough JE, Webb SJ. Photo-dissociation of self-assembled (anthracene-2-carbonyl)amino acid hydrogels. Chem Commun (Camb) 2020;56:13792-5. [PMID: 33078185 DOI: 10.1039/d0cc05292b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chyzy A, Plonska-Brzezinska ME. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020;25:E5795. [PMID: 33302592 DOI: 10.3390/molecules25245795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhang X, Zhang C, Yang Y, zhang H, Huang X, Hang R, Yao X. Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chemical Engineering Journal 2019;374:596-604. [DOI: 10.1016/j.cej.2019.05.229] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
7 Jiao C, Chen Y, Liu T, Peng X, Zhao Y, Zhang J, Wu Y, Wang H. Rigid and Strong Thermoresponsive Shape Memory Hydrogels Transformed from Poly(vinylpyrrolidone- co-acryloxy acetophenone) Organogels. ACS Appl Mater Interfaces 2018;10:32707-16. [PMID: 30165020 DOI: 10.1021/acsami.8b11391] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
8 Mehra RR, Tiwari P, Basu A, Duttkonar A. In search of bioinspired hydrogels from amphiphilic peptides: a template for nanoparticle stabilization for the sustained release of anticancer drugs. New J Chem 2019;43:11666-78. [DOI: 10.1039/c9nj01763a] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
9 Chivers PRA, Smith DK. Shaping and structuring supramolecular gels. Nat Rev Mater 2019;4:463-78. [DOI: 10.1038/s41578-019-0111-6] [Cited by in Crossref: 101] [Cited by in F6Publishing: 44] [Article Influence: 50.5] [Reference Citation Analysis]
10 Gavel PK, Parmar HS, Tripathi V, Kumar N, Biswas A, Das AK. Investigations of Anti-Inflammatory Activity of a Peptide-Based Hydrogel Using Rat Air Pouch Model. ACS Appl Mater Interfaces 2019;11:2849-59. [DOI: 10.1021/acsami.8b19228] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
11 Chen J, Zou X. Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater 2019;4:120-31. [PMID: 31667440 DOI: 10.1016/j.bioactmat.2019.01.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 34.0] [Reference Citation Analysis]
12 Rickhoff J, Cornelissen NV, Beuse T, Rentmeister A, Jan Ravoo B. Multiresponsive hydrogels and organogels based on photocaged cysteine. Chem Commun (Camb) 2021;57:5913-6. [PMID: 34008646 DOI: 10.1039/d1cc01363g] [Reference Citation Analysis]
13 Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021;113:104135. [PMID: 33160267 DOI: 10.1016/j.jmbbm.2020.104135] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020;8:654. [PMID: 32793562 DOI: 10.3389/fbioe.2020.00654] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
15 Cheng Q, Ding S, Zheng Y, Wu M, Peng YY, Diaz-Dussan D, Shi Z, Liu Y, Zeng H, Cui Z, Narain R. Dual Cross-Linked Hydrogels with Injectable, Self-Healing, and Antibacterial Properties Based on the Chemical and Physical Cross-Linking. Biomacromolecules 2021;22:1685-94. [PMID: 33779160 DOI: 10.1021/acs.biomac.1c00111] [Reference Citation Analysis]
16 Jain R, Roy S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 2019;9:38745-59. [DOI: 10.1039/c9ra07454f] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 2021;171:240-56. [PMID: 33561451 DOI: 10.1016/j.addr.2021.02.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
18 Mehra RR, Basu A, Christman RM, Harjit J, Mishra AK, Tiwari AK, Duttkonar A. Mechanoresponsive, proteolytically stable and biocompatible supergelators from ultra short enantiomeric peptides with sustained drug release propensity. New J Chem 2020;44:6346-54. [DOI: 10.1039/d0nj00102c] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Li J, Liang S, Yan Y, Tian X, Li X. O-Mannosylation Affords a Glycopeptide Hydrogel with Inherent Antibacterial Activities against E. coli via Multivalent Interactions between Lectins and Supramolecular Assemblies. Macromol Biosci 2019;19:e1900124. [PMID: 31310440 DOI: 10.1002/mabi.201900124] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ren P, Li J, Zhao L, Wang A, Wang M, Li J, Jian H, Li X, Yan X, Bai S. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS Appl Mater Interfaces 2020;12:21433-40. [DOI: 10.1021/acsami.0c03038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
21 Yang X, Wang Y, Qi W, Xing R, Yang X, Xing Q, Su R, He Z. Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. J Mater Chem B 2019;7:2981-8. [DOI: 10.1039/c8tb03121e] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
22 Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020;16:1404-54. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Cited by in Crossref: 91] [Cited by in F6Publishing: 22] [Article Influence: 91.0] [Reference Citation Analysis]
23 Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020;8:504. [PMID: 32548101 DOI: 10.3389/fbioe.2020.00504] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
24 Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020;16:10065-95. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
25 Hu Y, Shen P, Zeng N, Wang L, Yan D, Cui L, Yang K, Zhai C. Hybrid Hydrogel Electrolyte Based on Metal-Organic Supermolecular Self-Assembly and Polymer Chemical Cross-Linking for Rechargeable Aqueous Zn-MnO2 Batteries. ACS Appl Mater Interfaces 2020;12:42285-93. [PMID: 32838531 DOI: 10.1021/acsami.0c10321] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Paul S, Basu K, Das KS, Banerjee A. Peptide-Based Hydrogels as a Scaffold for In Situ Synthesis of Metal Nanoparticles: Catalytic Activity of the Nanohybrid System. ChemNanoMat 2018;4:882-7. [DOI: 10.1002/cnma.201800227] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
27 Jain R, Roy S. Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels. ACS Biomater Sci Eng 2020;6:2832-46. [PMID: 33463249 DOI: 10.1021/acsbiomaterials.9b01998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS Appl Polym Mater 2020;2:1134-44. [PMID: 33834166 DOI: 10.1021/acsapm.9b00921] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
29 Xie YY, Zhang YW, Qin XT, Liu LP, Wahid F, Zhong C, Jia SR. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. Colloids Surf B Biointerfaces 2020;193:111099. [PMID: 32408261 DOI: 10.1016/j.colsurfb.2020.111099] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
30 Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021;9:6536-52. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Reference Citation Analysis]
32 Gavel PK, Kumar N, Parmar HS, Das AK. Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. ACS Appl Bio Mater 2020;3:3326-36. [DOI: 10.1021/acsabm.0c00252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
33 Sahoo SD, Prasad E. Self-healing stable polymer hydrogel for pH regulated selective adsorption of dye and slow release of graphene quantum dots. Soft Matter 2020;16:2075-85. [DOI: 10.1039/c9sm02525a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]