BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Long L, Ge J, Li H, Zhang M, Wan Q, Yu X. Effect of Imidacloprid Uptake from Contaminated Soils on Vegetable Growth. J Agric Food Chem 2019;67:7232-42. [DOI: 10.1021/acs.jafc.9b00747] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Cui K, Ning M, Liang J, Guan S, Fang L, Ding R, Wang J, Li T, Dong Z. Pollution characteristics and non-dietary human cumulative risk assessment of neonicotinoids in vegetable greenhouse soils: a case study in Shandong Province, China. J Soils Sediments. [DOI: 10.1007/s11368-022-03321-w] [Reference Citation Analysis]
2 Wang X, Li N, Chen S, Ge YH, Xiao Y, Zhao M, Wu JL. MS-FINDER Assisted in Understanding the Profile of Flavonoids in Temporal Dimension during the Fermentation of Pu-erh Tea. J Agric Food Chem 2022. [PMID: 35635519 DOI: 10.1021/acs.jafc.2c01595] [Reference Citation Analysis]
3 Lin Y, Zhang P, Wu Q, Zhang Y, Wei Q, Sun Y, Wu Y, Sun S, Cui G. Leymus chinensis Adapts to Degraded Soil Environments by Changing Metabolic Pathways and Root Exudate Components. Front Plant Sci 2022;13:894346. [DOI: 10.3389/fpls.2022.894346] [Reference Citation Analysis]
4 Huo M, Ma W, Zhou K, Xu X, Liu Z, Huang L. Migration and toxicity of toltrazuril and its main metabolites in the environment. Chemosphere 2022;:134888. [PMID: 35561774 DOI: 10.1016/j.chemosphere.2022.134888] [Reference Citation Analysis]
5 Zhang Q, Du Y, Yu M, Ren L, Guo Y, Li Q, Yin M, Li X, Chen F. Controlled release of dinotefuran with temperature/pH-responsive chitosan-gelatin microspheres to reduce leaching risk during application. Carbohydr Polym 2022;277:118880. [PMID: 34893283 DOI: 10.1016/j.carbpol.2021.118880] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang Y, Huang L, Liu L, Cao X, Sun C, Lin X. Metabolic disturbance in lettuce (Lactuca sativa) plants triggered by imidacloprid and fenvalerate. Sci Total Environ 2021;802:149764. [PMID: 34461477 DOI: 10.1016/j.scitotenv.2021.149764] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Aliste M, Garrido I, Hernández V, Flores P, Hellín P, Navarro S, Fenoll J. Assessment of reclaimed agro-wastewater polluted with insecticide residues for irrigation of growing lettuce (Lactuca sativa L) using solar photocatalytic technology. Environ Pollut 2022;292:118367. [PMID: 34655696 DOI: 10.1016/j.envpol.2021.118367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhang N, Huang L, Zhang Y, Liu L, Sun C, Lin X. Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings. Environ Pollut 2021;291:118221. [PMID: 34740294 DOI: 10.1016/j.envpol.2021.118221] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhou J, Dong C, An W, Zhao Q, Zhang Y, Li Z, Jiao B. Dissipation of imidacloprid and its metabolites in Chinese prickly ash (Zanthoxylum) and their dietary risk assessment. Ecotoxicol Environ Saf 2021;225:112719. [PMID: 34478976 DOI: 10.1016/j.ecoenv.2021.112719] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Liu T, Luo J, Liu S, Li T, Li H, Zhang L, Mu W, Zou N. Clothianidin loaded TA/Fe (III) controlled-release granules: improve pesticide bioavailability and alleviate oxidative stress. J Hazard Mater 2021;416:125861. [PMID: 34492809 DOI: 10.1016/j.jhazmat.2021.125861] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Stoykova P, Ohkawa H, Inui H. Simple monitoring of endocrine-disrupting chemicals using transgenic Arabidopsis plants expressing medaka estrogen receptor. Chemosphere 2021;286:131633. [PMID: 34325267 DOI: 10.1016/j.chemosphere.2021.131633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wang W, Huang D, Wang D, Tan M, Geng M, Zhu C, Chen N, Zhou D. Extensive production of hydroxyl radicals during oxygenation of anoxic paddy soils: Implications to imidacloprid degradation. Chemosphere 2021;286:131565. [PMID: 34280832 DOI: 10.1016/j.chemosphere.2021.131565] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Liu L, Guo J, Ding L. Polyaniline Nanowire Arrays Deposited on Porous Carbon Derived from Raffia for Electrochemical Detection of Imidacloprid. Electroanalysis 2021;33:2048-52. [DOI: 10.1002/elan.202100162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Huang A, van den Brink NW, Buijse L, Roessink I, van den Brink PJ. The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquat Toxicol 2021;235:105837. [PMID: 33915471 DOI: 10.1016/j.aquatox.2021.105837] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kadlikova K, Vaclavikova M, Halesova T, Kamler M, Markovic M, Erban T. The investigation of honey bee pesticide poisoning incidents in Czechia. Chemosphere 2021;263:128056. [DOI: 10.1016/j.chemosphere.2020.128056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhou W, Liang X, Li K, Dai P, Li J, Liang B, Sun C, Lin X. Metabolomics analysis reveals potential mechanisms of phenolic accumulation in lettuce (Lactuca sativa L.) induced by low nitrogen supply. Plant Physiol Biochem 2021;158:446-53. [PMID: 33250325 DOI: 10.1016/j.plaphy.2020.11.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
17 Li X, Zhang M, Li Y, Yu X, Nie J. Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. chinensis. Chemosphere 2021;266:129020. [PMID: 33248730 DOI: 10.1016/j.chemosphere.2020.129020] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Chen Y, Nie E, Huang L, Lu Y, Gao X, Akhtar K, Ye Q, Wang H. Translocation and metabolism of imidacloprid in cabbage: Application of 14C-labelling and LC-QTOF-MS. Chemosphere 2021;263:127928. [PMID: 32835975 DOI: 10.1016/j.chemosphere.2020.127928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhao Y, Zheng X, Wang Q, Zhe T, Bai Y, Bu T, Zhang M, Wang L. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chem 2020;333:127495. [PMID: 32663747 DOI: 10.1016/j.foodchem.2020.127495] [Cited by in Crossref: 16] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
20 Li Y, Yan H, Li X, Ge J, Cheng J, Yu X. Presence, distribution and risk assessment of phthalic acid esters (PAEs) in suburban plastic film pepper-growing greenhouses with different service life. Ecotoxicology and Environmental Safety 2020;196:110551. [DOI: 10.1016/j.ecoenv.2020.110551] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
21 Li Y, Yan H, Liu Q, Li X, Ge J, Yu X. Accumulation and transport patterns of six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions. Chemosphere 2020;249:126457. [DOI: 10.1016/j.chemosphere.2020.126457] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]