BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Erban T, Sopko B, Talacko P, Harant K, Kadlikova K, Halesova T, Riddellova K, Pekas A. Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. Journal of Proteomics 2019;196:69-80. [DOI: 10.1016/j.jprot.2018.12.022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Camp AA, Lehmann DM. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. Environ Toxicol Chem 2021;40:309-22. [PMID: 33226673 DOI: 10.1002/etc.4939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Šlachta M, Erban T, Votavová A, Bešta T, Skalský M, Václavíková M, Halešová T, Edwards-jonášová M, Včeláková R, Cudlín P. Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring. Sustainability 2020;12:9427. [DOI: 10.3390/su12229427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kadlikova K, Vaclavikova M, Halesova T, Kamler M, Markovic M, Erban T. The investigation of honey bee pesticide poisoning incidents in Czechia. Chemosphere 2021;263:128056. [DOI: 10.1016/j.chemosphere.2020.128056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Huang A, van den Brink NW, Buijse L, Roessink I, van den Brink PJ. The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquat Toxicol 2021;235:105837. [PMID: 33915471 DOI: 10.1016/j.aquatox.2021.105837] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wang X, Qiu J, Xu Y, Liao G, Jia Q, Pan Y, Wang T, Qian Y. Integrated non-targeted lipidomics and metabolomics analyses for fluctuations of neonicotinoids imidacloprid and acetamiprid on Neuro-2a cells. Environ Pollut 2021;284:117327. [PMID: 34030083 DOI: 10.1016/j.envpol.2021.117327] [Reference Citation Analysis]
6 Shu B, Yang X, Dai J, Yu H, Yu J, Li X, Cao L, Lin J. Effects of camptothecin on histological structures and gene expression profiles of fat bodies in Spodoptera frugiperda. Ecotoxicol Environ Saf 2021;228:112968. [PMID: 34763196 DOI: 10.1016/j.ecoenv.2021.112968] [Reference Citation Analysis]
7 Rougée LRA, Collier AC, Richmond RH. Chronic Exposure to 4-Nonylphenol Alters UDP-Glycosyltransferase and Sulfotransferase Clearance of Steroids in the Hard Coral, Pocillopora damicornis. Front Physiol 2021;12:608056. [PMID: 33679431 DOI: 10.3389/fphys.2021.608056] [Reference Citation Analysis]
8 Li Y, Long L, Ge J, Li H, Zhang M, Wan Q, Yu X. Effect of Imidacloprid Uptake from Contaminated Soils on Vegetable Growth. J Agric Food Chem 2019;67:7232-42. [DOI: 10.1021/acs.jafc.9b00747] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
9 Erban T, Vaclavikova M, Tomesova D, Halesova T, Hubert J. tau-Fluvalinate and other pesticide residues in honey bees before overwintering. Pest Manag Sci 2019;75:3245-51. [PMID: 30983110 DOI: 10.1002/ps.5446] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol 2021;187:103-15. [PMID: 34618129 DOI: 10.1093/plphys/kiab242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
11 Laicher D, Benkendorff K, White S, Conrad S, Woodrow RL, Butcherine P, Sanders CJ. Pesticide occurrence in an agriculturally intensive and ecologically important coastal aquatic system in Australia. Marine Pollution Bulletin 2022;180:113675. [DOI: 10.1016/j.marpolbul.2022.113675] [Reference Citation Analysis]
12 Ardalani H, Vidkjær NH, Kryger P, Fiehn O, Fomsgaard IS. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees. Environ Int 2021;152:106503. [PMID: 33756430 DOI: 10.1016/j.envint.2021.106503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Erban T, Shcherbachenko E, Talacko P, Harant K. The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. J Nat Prod 2019;82:1217-26. [DOI: 10.1021/acs.jnatprod.8b00968] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
14 Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences. J Proteomics 2021;249:104356. [PMID: 34438106 DOI: 10.1016/j.jprot.2021.104356] [Reference Citation Analysis]
15 Shi J, Yang H, Yu L, Liao C, Liu Y, Jin M, Yan W, Wu XB. Sublethal acetamiprid doses negatively affect the lifespans and foraging behaviors of honey bee (Apis mellifera L.) workers. Science of The Total Environment 2020;738:139924. [DOI: 10.1016/j.scitotenv.2020.139924] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
16 Pfaff J, Reinwald H, Ayobahan SU, Alvincz J, Göckener B, Shomroni O, Salinas G, Düring RA, Schäfers C, Eilebrecht S. Toxicogenomic differentiation of functional responses to fipronil and imidacloprid in Daphnia magna. Aquat Toxicol 2021;238:105927. [PMID: 34340001 DOI: 10.1016/j.aquatox.2021.105927] [Reference Citation Analysis]
17 Erban T, Sopko B, Vaclavikova M, Tomesova D, Halesova T, Rezac M. Pesticide comparison of Phylloneta impressa (Araneae: Theridiidae) females, cocoons and webs with prey remnants collected from a rape field before the harvest. Pest Manag Sci 2019;76:1128-33. [DOI: 10.1002/ps.5625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Erban T, Klimov P, Talacko P, Harant K, Hubert J. Proteogenomics of the house dust mite, Dermatophagoides farinae: Allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences. Journal of Proteomics 2020;210:103535. [DOI: 10.1016/j.jprot.2019.103535] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
19 Kocourek F, Stara J, Sopko B, Talacko P, Harant K, Hovorka T, Erban T. Proteogenomic insight into the basis of the insecticide tolerance/resistance of the pollen beetle Brassicogethes (Meligethes) aeneus. J Proteomics 2021;233:104086. [PMID: 33378720 DOI: 10.1016/j.jprot.2020.104086] [Reference Citation Analysis]
20 Motaung TE. Chloronicotinyl insecticide imidacloprid: Agricultural relevance, pitfalls and emerging opportunities. Crop Protection 2020;131:105097. [DOI: 10.1016/j.cropro.2020.105097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]