BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gunnarsson I, Aradóttir ES, Oelkers EH, Clark DE, Arnarson MÞ, Sigfússon B, Snæbjörnsdóttir SÓ, Matter JM, Stute M, Júlíusson BM, Gíslason SR. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site. International Journal of Greenhouse Gas Control 2018;79:117-26. [DOI: 10.1016/j.ijggc.2018.08.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Erol S, Akın T, Başer A, Saraçoğlu Ö, Akın S. Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics 2022;98:102271. [DOI: 10.1016/j.geothermics.2021.102271] [Reference Citation Analysis]
2 Cook D, Sigurjónsson HÆ, Davíðsdóttir B, Bogason SG. An environmental life cycle cost assessment of the costs of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France. Geothermics 2022;103:102425. [DOI: 10.1016/j.geothermics.2022.102425] [Reference Citation Analysis]
3 Vitillo JG, Eisaman MD, Aradóttir ES, Passarini F, Wang T, Sheehan SW. The role of carbon capture, utilization, and storage for economic pathways that limit global warming to below 1.5°C. iScience 2022;25:104237. [DOI: 10.1016/j.isci.2022.104237] [Reference Citation Analysis]
4 Manente G, Lazzaretto A, Bardi A, Paci M. Geothermal power plant layouts with water absorption and reinjection of H2S and CO2 in fields with a high content of non-condensable gases. Geothermics 2019;78:70-84. [DOI: 10.1016/j.geothermics.2018.11.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
5 Breyer C, Fasihi M, Bajamundi C, Creutzig F. Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule 2019;3:2053-7. [DOI: 10.1016/j.joule.2019.08.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 4] [Article Influence: 13.0] [Reference Citation Analysis]
6 Fasihi M, Breyer C. Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. Journal of Cleaner Production 2020;243:118466. [DOI: 10.1016/j.jclepro.2019.118466] [Cited by in Crossref: 44] [Cited by in F6Publishing: 5] [Article Influence: 22.0] [Reference Citation Analysis]
7 Kelemen PB, Mcqueen N, Wilcox J, Renforth P, Dipple G, Vankeuren AP. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chemical Geology 2020;550:119628. [DOI: 10.1016/j.chemgeo.2020.119628] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 9.5] [Reference Citation Analysis]
8 Karlsdottir MR, Heinonen J, Palsson H, Palsson OP. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020;84:101727. [DOI: 10.1016/j.geothermics.2019.101727] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 11.5] [Reference Citation Analysis]
9 Galeczka IM, Stefánsson A, Kleine BI, Gunnarsson-robin J, Snæbjörnsdóttir SÓ, Sigfússon B, Gunnarsdóttir SH, Weisenberger TB, Oelkers EH. A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site. International Journal of Greenhouse Gas Control 2022;115:103610. [DOI: 10.1016/j.ijggc.2022.103610] [Reference Citation Analysis]
10 Deutz S, Bardow A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat Energy 2021;6:203-13. [DOI: 10.1038/s41560-020-00771-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 27.0] [Reference Citation Analysis]
11 Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S. The cost of CO2 transport and storage in global integrated assessment modeling. International Journal of Greenhouse Gas Control 2021;109:103367. [DOI: 10.1016/j.ijggc.2021.103367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Voigt M, Marieni C, Baldermann A, Galeczka IM, Wolff-boenisch D, Oelkers EH, Gislason SR. An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochimica et Cosmochimica Acta 2021;308:21-41. [DOI: 10.1016/j.gca.2021.05.056] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Raza A, Glatz G, Gholami R, Mahmoud M, Alafnan S. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth-Science Reviews 2022;229:104036. [DOI: 10.1016/j.earscirev.2022.104036] [Reference Citation Analysis]
14 Clark DE, Oelkers EH, Gunnarsson I, Sigfússon B, Snæbjörnsdóttir SÓ, Aradóttir ES, Gíslason SR. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta 2020;279:45-66. [DOI: 10.1016/j.gca.2020.03.039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 9.5] [Reference Citation Analysis]
15 Kelemen P, Aines R, Bennett E, Benson S, Carter E, Coggon J, de Obeso J, Evans O, Gadikota G, Dipple G, Godard M, Harris M, Higgins J, Johnson K, Kourim F, Lafay R, Lambart S, Manning C, Matter J, Michibayashi K, Morishita T, Noël J, Okazaki K, Renforth P, Robinson B, Savage H, Skarbek R, Spiegelman M, Takazawa E, Teagle D, Urai J, Wilcox J. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods. Energy Procedia 2018;146:92-102. [DOI: 10.1016/j.egypro.2018.07.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
16 Ratouis TM, Snæbjörnsdóttir SÓ, Voigt MJ, Sigfússon B, Gunnarsson G, Aradóttir ES, Hjörleifsdóttir V. Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland. International Journal of Greenhouse Gas Control 2022;114:103586. [DOI: 10.1016/j.ijggc.2022.103586] [Reference Citation Analysis]
17 Capron ME, Stewart JR, de Ramon N’yeurt A, Chambers MD, Kim JK, Yarish C, Jones AT, Blaylock RB, James SC, Fuhrman R, Sherman MT, Piper D, Harris G, Hasan MA. Restoring Pre-Industrial CO2 Levels While Achieving Sustainable Development Goals. Energies 2020;13:4972. [DOI: 10.3390/en13184972] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
18 Snæbjörnsdóttir SÓ, Sigfússon B, Marieni C, Goldberg D, Gislason SR, Oelkers EH. Carbon dioxide storage through mineral carbonation. Nat Rev Earth Environ 2020;1:90-102. [DOI: 10.1038/s43017-019-0011-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 9] [Article Influence: 22.5] [Reference Citation Analysis]
19 Ku AY, Cook PJ, Hao P, Li X, Lemmon JP, Lockwood T, Mac Dowell N, Singh SP, Wei N, Xu W. Cross-regional drivers for CCUS deployment. Clean Energy 2020;4:202-32. [DOI: 10.1093/ce/zkaa008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
20 Badmos SB, Bui T, Striolo A, Cole DR. Factors Governing the Enhancement of Hydrocarbon Recovery via H 2 S and/or CO 2 Injection: Insights from a Molecular Dynamics Study in Dry Nanopores. J Phys Chem C 2019;123:23907-18. [DOI: 10.1021/acs.jpcc.9b04247] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 D'Aniello A, Tómasdóttir S, Sigfússon B, Fabbricino M. Modeling Gaseous CO2 Flow Behavior in Layered Basalts: Dimensional Analysis and Aquifer Response. Ground Water 2021;59:677-93. [PMID: 33655491 DOI: 10.1111/gwat.13090] [Reference Citation Analysis]
22 Kelemen P, Benson SM, Pilorgé H, Psarras P, Wilcox J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front Clim 2019;1:9. [DOI: 10.3389/fclim.2019.00009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
23 M R, H D, N W, M G, T R, P T, S W. Carbon mitigation unit costs of building retrofits and the scope for carbon tax, a case study. Energy and Buildings 2019;203:109415. [DOI: 10.1016/j.enbuild.2019.109415] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
24 Schwartz MO. Can CO2 sequestration in basalt efficiently reduce greenhouse gas emission? Environ Technol 2020;:1-11. [PMID: 32851940 DOI: 10.1080/09593330.2020.1815859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Zuffi C, Manfrida G, Asdrubali F, Talluri L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 2022;104:102434. [DOI: 10.1016/j.geothermics.2022.102434] [Reference Citation Analysis]
26 Marieni C, Voigt M, Clark DE, Gíslason SR, Oelkers EH. Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control 2021;109:103357. [DOI: 10.1016/j.ijggc.2021.103357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Huang Y, Wu C, Chen Y, Chou I, Jiang L. Measurement of diffusion coefficients of hydrogen sulfide in water and brine using in-situ Raman spectroscopy. Fluid Phase Equilibria 2022;556:113381. [DOI: 10.1016/j.fluid.2022.113381] [Reference Citation Analysis]