BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Voigt M, Marieni C, Clark DE, Gíslason SR, Oelkers EH. Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia 2018;146:81-91. [DOI: 10.1016/j.egypro.2018.07.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Marieni C, Voigt M, Clark DE, Gíslason SR, Oelkers EH. Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control 2021;109:103357. [DOI: 10.1016/j.ijggc.2021.103357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Abdelali A, Nezli IE, Kechiched R, Attalah S, Benhamida SA, Pang Z. Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO4–H2O isotope geothermometers. Applied Geochemistry 2020;113:104492. [DOI: 10.1016/j.apgeochem.2019.104492] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Voigt M, Pearce CR, Baldermann A, Oelkers EH. Stable and radiogenic strontium isotope fractionation during hydrothermal seawater-basalt interaction. Geochimica et Cosmochimica Acta 2018;240:131-51. [DOI: 10.1016/j.gca.2018.08.018] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
4 Marieni C, Matter JM, Teagle DA. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochimica et Cosmochimica Acta 2020;272:259-75. [DOI: 10.1016/j.gca.2020.01.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hellevang H, Wolff-boenisch D, Nooraiepour M, Chudaev O, Kharaka Y, Harmon R, Millot R, Shouakar-stash O. Kinetic control on the distribution of secondary precipitates during CO 2 -basalt interactions. E3S Web Conf 2019;98:04006. [DOI: 10.1051/e3sconf/20199804006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ololade OO, Mavimbela S, Oke SA, Makhadi R. Impact of Leachate from Northern Landfill Site in Bloemfontein on Water and Soil Quality: Implications for Water and Food Security. Sustainability 2019;11:4238. [DOI: 10.3390/su11154238] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
7 Clark DE, Galeczka IM, Dideriksen K, Voigt MJ, Wolff-boenisch D, Gislason SR. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C. International Journal of Greenhouse Gas Control 2019;89:9-19. [DOI: 10.1016/j.ijggc.2019.07.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Galeczka IM, Stefánsson A, Kleine BI, Gunnarsson-robin J, Snæbjörnsdóttir SÓ, Sigfússon B, Gunnarsdóttir SH, Weisenberger TB, Oelkers EH. A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site. International Journal of Greenhouse Gas Control 2022;115:103610. [DOI: 10.1016/j.ijggc.2022.103610] [Reference Citation Analysis]
9 Baldermann A, Preissegger V, Dietzel M. Solubility of C-A-S-H phases with high degree of heavy metal ion substitution. Construction and Building Materials 2022;327:126926. [DOI: 10.1016/j.conbuildmat.2022.126926] [Reference Citation Analysis]
10 Lu P, Luo P, Zhang G, Zhang S, Zhu C. A mineral-water-gas interaction model of pCO2 as a function of temperature in sedimentary basins. Chemical Geology 2020;558:119868. [DOI: 10.1016/j.chemgeo.2020.119868] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Zhang G, Lu P, Zhang Y, Tu K, Zhu C. SupPhreeqc: A program for generating customized Phreeqc thermodynamic datasets from Supcrtbl and extending calculations to elevated pressures and temperatures. Computers & Geosciences 2020;143:104560. [DOI: 10.1016/j.cageo.2020.104560] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Lu P, Zhang G, Apps J, Zhu C. Comparison of thermodynamic data files for PHREEQC. Earth-Science Reviews 2022;225:103888. [DOI: 10.1016/j.earscirev.2021.103888] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hörbrand T, Baumann T, Moog HC. Validation of hydrogeochemical databases for problems in deep geothermal energy. Geotherm Energy 2018;6. [DOI: 10.1186/s40517-018-0106-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
14 Osselin F, Pichavant M, Champallier R, Ulrich M, Raimbourg H. Reactive transport experiments of coupled carbonation and serpentinization in a natural serpentinite. Implication for hydrogen production and carbon geological storage. Geochimica et Cosmochimica Acta 2022;318:165-89. [DOI: 10.1016/j.gca.2021.11.039] [Reference Citation Analysis]
15 Voigt M, Marieni C, Baldermann A, Galeczka IM, Wolff-boenisch D, Oelkers EH, Gislason SR. An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochimica et Cosmochimica Acta 2021;308:21-41. [DOI: 10.1016/j.gca.2021.05.056] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Oelkers EH, Pogge von Strandmann PA, Mavromatis V. The rapid resetting of the Ca isotopic signatures of calcite at ambient temperature during its congruent dissolution, precipitation, and at equilibrium. Chemical Geology 2019;512:1-10. [DOI: 10.1016/j.chemgeo.2019.02.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 5.3] [Reference Citation Analysis]
17 Neeraj, Yadav S. Carbon storage by mineral carbonation and industrial applications of CO2. Materials Science for Energy Technologies 2020;3:494-500. [DOI: 10.1016/j.mset.2020.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Heřmanská M, Voigt MJ, Marieni C, Declercq J, Oelkers EH. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology 2022. [DOI: 10.1016/j.chemgeo.2022.120807] [Reference Citation Analysis]
19 Clark DE, Oelkers EH, Gunnarsson I, Sigfússon B, Snæbjörnsdóttir SÓ, Aradóttir ES, Gíslason SR. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta 2020;279:45-66. [DOI: 10.1016/j.gca.2020.03.039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 9.5] [Reference Citation Analysis]
20 Ricci A, Kleine BI, Fiebig J, Gunnarsson-robin J, Mativo Kamunya K, Mountain B, Stefánsson A. Equilibrium and kinetic controls on molecular hydrogen abundance and hydrogen isotope fractionation in hydrothermal fluids. Earth and Planetary Science Letters 2022;579:117338. [DOI: 10.1016/j.epsl.2021.117338] [Reference Citation Analysis]
21 Eiriksdottir ES, Galeczka IM, Gislason SR. Continuous measurements of riverine chemical constituents reveal the environmental effect of the 2014–2015 Bárðarbunga eruption in Iceland. Journal of Volcanology and Geothermal Research 2020;392:106766. [DOI: 10.1016/j.jvolgeores.2019.106766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Kersten M. Geothermometrische Modellierung der Lagerstättentemperatur balneologisch genutzter Thermalwässer mit Hilfe von PHREEQC. Grundwasser - Zeitschrift der Fachsektion Hydrogeologie 2019;24:269-75. [DOI: 10.1007/s00767-019-00429-8] [Reference Citation Analysis]
23 Clark DE, Gunnarsson I, Aradóttir ES, Þ. Arnarson M, Þorgeirsson ÞA, Sigurðardóttir SS, Sigfússon B, Snæbjörnsdóttir SÓ, Oelkers EH, Gíslason SR. The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site, Iceland. Energy Procedia 2018;146:121-8. [DOI: 10.1016/j.egypro.2018.07.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
24 Grimm C, Mavromatis V, Leis A, Pokrovsky OS, Oelkers EH. The temporal evolution of the carbon isotope composition of calcite in the presence of cyanobacteria. Chemical Geology 2021;584:120556. [DOI: 10.1016/j.chemgeo.2021.120556] [Reference Citation Analysis]
25 Postma TJW, Bandilla KW, Peters CA, Celia MA. Field‐Scale Modeling of CO 2 Mineral Trapping in Reactive Rocks: A Vertically Integrated Approach. Water Resources Research 2022;58. [DOI: 10.1029/2021wr030626] [Reference Citation Analysis]