BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 2017;22:210-22. [PMID: 27693712 DOI: 10.1016/j.drudis.2016.09.019] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Fontana F, Figueiredo P, Martins JP, Santos HA. Requirements for Animal Experiments: Problems and Challenges. Small 2021;17:2004182. [DOI: 10.1002/smll.202004182] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Aman Y, Frank J, Lautrup SH, Matysek A, Niu Z, Yang G, Shi L, Bergersen LH, Storm-Mathisen J, Rasmussen LJ, Bohr VA, Nilsen H, Fang EF. The NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev 2020;185:111194. [PMID: 31812486 DOI: 10.1016/j.mad.2019.111194] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
3 Schneider G, Schneider P. Macromolecular target prediction by self-organizing feature maps. Expert Opinion on Drug Discovery 2017;12:271-7. [DOI: 10.1080/17460441.2017.1274727] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
4 Chakraborti S, Ramakrishnan G, Srinivasan N. In Silico Modeling of FDA-Approved Drugs for Discovery of Anticandida Agents: A Drug-Repurposing Approach. In Silico Drug Design. Elsevier; 2019. pp. 463-526. [DOI: 10.1016/b978-0-12-816125-8.00016-x] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Lu L, Yu H. DR2DI: a powerful computational tool for predicting novel drug-disease associations. J Comput Aided Mol Des 2018;32:633-42. [DOI: 10.1007/s10822-018-0117-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
6 Arif A, Ansari S, Ahsan H, Mahmood R, Khan FH. An overview of Covid-19 pandemic: immunology and pharmacology. J Immunoassay Immunochem 2021;:1-20. [PMID: 33788668 DOI: 10.1080/15321819.2021.1904414] [Reference Citation Analysis]
7 Masuda T, Tsuruda Y, Matsumoto Y, Uchida H, Nakayama KI, Mimori K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci 2020;111:1039-46. [PMID: 31957175 DOI: 10.1111/cas.14318] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
8 Nishimura K, Takata K. Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders. Int J Mol Sci 2021;22:9047. [PMID: 34445753 DOI: 10.3390/ijms22169047] [Reference Citation Analysis]
9 Holder LB, Haque MM, Skinner MK. Machine learning for epigenetics and future medical applications. Epigenetics 2017;12:505-14. [PMID: 28524769 DOI: 10.1080/15592294.2017.1329068] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 9.8] [Reference Citation Analysis]
10 Leão C, Borges A, Simões M. NSAIDs as a Drug Repurposing Strategy for Biofilm Control. Antibiotics (Basel) 2020;9:E591. [PMID: 32927675 DOI: 10.3390/antibiotics9090591] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Shaikh F, Tai HK, Desai N, Siu SWI. LigTMap: ligand and structure-based target identification and activity prediction for small molecular compounds. J Cheminform 2021;13:44. [PMID: 34112240 DOI: 10.1186/s13321-021-00523-1] [Reference Citation Analysis]
12 Bharadwaj S, Lee KE, Dwivedi VD, Kang SG. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 Mpro via combinatorial molecular simulation calculations. Life Sci 2020;257:118080. [PMID: 32653520 DOI: 10.1016/j.lfs.2020.118080] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
13 [DOI: 10.1101/095653] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Borisov N, Sorokin M, Garazha A, Buzdin A. Quantitation of Molecular Pathway Activation Using RNA Sequencing Data. In: Astakhova K, Bukhari SA, editors. Nucleic Acid Detection and Structural Investigations. New York: Springer US; 2020. pp. 189-206. [DOI: 10.1007/978-1-0716-0138-9_15] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
15 Sadeghi SS, Keyvanpour MR. Computational Drug Repurposing: Classification of the Research Opportunities and Challenges. Curr Comput Aided Drug Des 2020;16:354-64. [PMID: 31198115 DOI: 10.2174/1573409915666190613113822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Nishimura Y, Tagawa M, Ito H, Tsuruma K, Hara H. Overcoming Obstacles to Drug Repositioning in Japan. Front Pharmacol 2017;8:729. [PMID: 29075191 DOI: 10.3389/fphar.2017.00729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 2017;8:10883-90. [PMID: 28029644 DOI: 10.18632/oncotarget.14073] [Cited by in Crossref: 130] [Cited by in F6Publishing: 92] [Article Influence: 26.0] [Reference Citation Analysis]
18 Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021;22:bbaa357. [PMID: 33348366 DOI: 10.1093/bib/bbaa357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Pereira F, Aires-de-Sousa J. Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar Drugs 2018;16:E236. [PMID: 30011882 DOI: 10.3390/md16070236] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 11.5] [Reference Citation Analysis]
20 Kumar S, Jang C, Subedi L, Kim SY, Kim MH. Repurposing of FDA approved ring systems through bi-directional target-ring system dual screening. Sci Rep 2020;10:21133. [PMID: 33273509 DOI: 10.1038/s41598-020-78077-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Kondo J, Inoue M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells 2019;8:E470. [PMID: 31108870 DOI: 10.3390/cells8050470] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 18.0] [Reference Citation Analysis]
22 Donner Y, Kazmierczak S, Fortney K. Drug Repurposing Using Deep Embeddings of Gene Expression Profiles. Mol Pharm 2018;15:4314-25. [PMID: 30001141 DOI: 10.1021/acs.molpharmaceut.8b00284] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
23 Wang J, Li W, Wang B, Hu B, Jiang H, Lai B, Li N, Cheng M. In Silicon Approach for Discovery of Chemopreventive Agents. Curr Pharmacol Rep 2017;3:184-95. [DOI: 10.1007/s40495-017-0094-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
24 Bellomo F, De Leo E, Taranta A, Giaquinto L, Di Giovamberardino G, Montefusco S, Rega LR, Pastore A, Medina DL, Di Bernardo D, De Matteis MA, Emma F. Drug Repurposing in Rare Diseases: An Integrative Study of Drug Screening and Transcriptomic Analysis in Nephropathic Cystinosis. Int J Mol Sci 2021;22:12829. [PMID: 34884638 DOI: 10.3390/ijms222312829] [Reference Citation Analysis]
25 Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems 2019;194:103850. [DOI: 10.1016/j.chemolab.2019.103850] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
26 Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev S, Kurbanov R, Artamonov A, Aladinskiy V, Veselov M, Kadurin A, Johansson S, Chen H, Nikolenko S, Aspuru-Guzik A, Zhavoronkov A. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. Front Pharmacol 2020;11:565644. [PMID: 33390943 DOI: 10.3389/fphar.2020.565644] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
27 Shen C, Ding J, Wang Z, Cao D, Ding X, Hou T. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. WIREs Comput Mol Sci 2020;10. [DOI: 10.1002/wcms.1429] [Cited by in Crossref: 35] [Cited by in F6Publishing: 13] [Article Influence: 11.7] [Reference Citation Analysis]
28 Yang PC, Purawat S, Ieong PU, Jeng MT, DeMarco KR, Vorobyov I, McCulloch AD, Altintas I, Amaro RE, Clancy CE. A demonstration of modularity, reuse, reproducibility, portability and scalability for modeling and simulation of cardiac electrophysiology using Kepler Workflows. PLoS Comput Biol 2019;15:e1006856. [PMID: 30849072 DOI: 10.1371/journal.pcbi.1006856] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yang Y, Ye Z, Su Y, Zhao Q, Li X, Ouyang D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta Pharm Sin B 2019;9:177-85. [PMID: 30766789 DOI: 10.1016/j.apsb.2018.09.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 10.5] [Reference Citation Analysis]
30 Wen WX, Lee SY, Siang R, Koh RY. Repurposing Pentoxifylline for the Treatment of Fibrosis: An Overview. Adv Ther 2017;34:1245-69. [PMID: 28484954 DOI: 10.1007/s12325-017-0547-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
31 Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N, Wang Y, Li X, Kar S, Hartmann C, Samii A, Giese A, Borisov N. Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs. Seminars in Cancer Biology 2018;53:110-24. [DOI: 10.1016/j.semcancer.2018.06.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
32 Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018;9:14692-722. [PMID: 29581875 DOI: 10.18632/oncotarget.24461] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
33 Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, Jung J, Shin JM. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Sci Rep 2018;8:8857. [PMID: 29891981 DOI: 10.1038/s41598-018-27214-6] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 18.0] [Reference Citation Analysis]
34 Wu Z, Li W, Liu G, Tang Y. Network-Based Methods for Prediction of Drug-Target Interactions. Front Pharmacol 2018;9:1134. [PMID: 30356768 DOI: 10.3389/fphar.2018.01134] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 10.5] [Reference Citation Analysis]
35 Aronskyy I, Masoudi-Sobhanzadeh Y, Cappuccio A, Zaslavsky E. Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discov Today 2021:S1359-6446(21)00335-4. [PMID: 34339864 DOI: 10.1016/j.drudis.2021.07.026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery - where do things stand? Expert Opin Drug Discov 2021;:1-14. [PMID: 34553659 DOI: 10.1080/17460441.2022.1985108] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinform 2021;22:1604-19. [PMID: 32043521 DOI: 10.1093/bib/bbz176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
38 Zhao K, So HC. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. Methods Mol Biol 2019;1903:219-37. [PMID: 30547445 DOI: 10.1007/978-1-4939-8955-3_13] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
39 Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. Mol Pharm 2017;14:3098-104. [PMID: 28703000 DOI: 10.1021/acs.molpharmaceut.7b00346] [Cited by in Crossref: 173] [Cited by in F6Publishing: 131] [Article Influence: 34.6] [Reference Citation Analysis]
40 Haldar R, Narayanan SJ. A novel ensemble based recommendation approach using network based analysis for identification of effective drugs for Tuberculosis. Math Biosci Eng 2022;19:873-91. [PMID: 34903017 DOI: 10.3934/mbe.2022040] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Karaman B, Sippl W. Computational Drug Repurposing: Current Trends. CMC 2019;26:5389-409. [DOI: 10.2174/0929867325666180530100332] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
42 Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A. Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. Mol Pharm 2018;15:4398-405. [PMID: 30180591 DOI: 10.1021/acs.molpharmaceut.8b00839] [Cited by in Crossref: 77] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
43 Negi V, Yang J, Speyer G, Pulgarin A, Handen A, Zhao J, Tai YY, Tang Y, Culley MK, Yu Q, Forsythe P, Gorelova A, Watson AM, Al Aaraj Y, Satoh T, Sharifi-Sanjani M, Rajaratnam A, Sembrat J, Provencher S, Yin X, Vargas SO, Rojas M, Bonnet S, Torrino S, Wagner BK, Schreiber SL, Dai M, Bertero T, Al Ghouleh I, Kim S, Chan SY. Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Sci Adv 2021;7:eabh3794. [PMID: 34669463 DOI: 10.1126/sciadv.abh3794] [Reference Citation Analysis]
44 Han Y, Wang Z, Ren J, Wei Z, Li J. Potential inhibitors for the novel coronavirus (SARS-CoV-2). Brief Bioinform 2021;22:1225-31. [PMID: 32942296 DOI: 10.1093/bib/bbaa209] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
45 Jahromi AM, Solhjoo A, Ghasemi M, Khedri M, Maleki R, Tayebi L. Atomistic insight into 2D COFs as antiviral agents against SARS-CoV-2. Mater Chem Phys 2022;276:125382. [PMID: 34725529 DOI: 10.1016/j.matchemphys.2021.125382] [Reference Citation Analysis]
46 Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018;16:758-68. [PMID: 29086699 DOI: 10.2174/1570159X15666171030142108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
47 Ryu JY, Kim HU, Lee SY. Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci U S A 2017;114:E9740-9. [PMID: 29078384 DOI: 10.1073/pnas.1713050114] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
48 Kumar S, Kumar S. Molecular Docking: A Structure-Based Approach for Drug Repurposing. In Silico Drug Design. Elsevier; 2019. pp. 161-89. [DOI: 10.1016/b978-0-12-816125-8.00006-7] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hsiao YW, Lu TP. Text-mining in cancer research may help identify effective treatments. Transl Lung Cancer Res 2019;8:S460-3. [PMID: 32038938 DOI: 10.21037/tlcr.2019.12.20] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020;12:E1058. [PMID: 32972027 DOI: 10.3390/v12091058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
51 Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022;27:49-64. [PMID: 34400352 DOI: 10.1016/j.drudis.2021.08.002] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Zeigler AC, Chandrabhatla AS, Christiansen SL, Nelson AR, Holmes JW, Saucerman JJ. Network model-based screen for FDA-approved drugs affecting cardiac fibrosis. CPT Pharmacometrics Syst Pharmacol 2021;10:377-88. [PMID: 33571402 DOI: 10.1002/psp4.12599] [Reference Citation Analysis]
53 Lee K, Kim D. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning. Genes (Basel) 2019;10:E906. [PMID: 31703452 DOI: 10.3390/genes10110906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
54 Masoudi-Sobhanzadeh Y, Masoudi-Nejad A. Synthetic repurposing of drugs against hypertension: a datamining method based on association rules and a novel discrete algorithm. BMC Bioinformatics 2020;21:313. [PMID: 32677879 DOI: 10.1186/s12859-020-03644-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. Math Biosci Eng 2021;18:6328-85. [PMID: 34517536 DOI: 10.3934/mbe.2021316] [Reference Citation Analysis]
56 Gysi DM, Nowick K. Construction, comparison and evolution of networks in life sciences and other disciplines. J R Soc Interface 2020;17:20190610. [PMID: 32370689 DOI: 10.1098/rsif.2019.0610] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
57 Chakraborti S, Ramakrishnan G, Srinivasan N. Repurposing Drugs Based on Evolutionary Relationships Between Targets of Approved Drugs and Proteins of Interest. Methods Mol Biol 2019;1903:45-59. [PMID: 30547435 DOI: 10.1007/978-1-4939-8955-3_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Zhao L, Ciallella HL, Aleksunes LM, Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 2020;25:1624-38. [PMID: 32663517 DOI: 10.1016/j.drudis.2020.07.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
59 Rajput A, Kumar A, Megha K, Thakur A, Kumar M. DrugRepV: a compendium of repurposed drugs and chemicals targeting epidemic and pandemic viruses. Brief Bioinform 2021;22:1076-84. [PMID: 33480398 DOI: 10.1093/bib/bbaa421] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
60 Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A. Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Res Rev 2019;49:49-66. [PMID: 30472217 DOI: 10.1016/j.arr.2018.11.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
61 Sohraby F, Aryapour H. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs. Semin Cancer Biol 2021;68:249-57. [PMID: 32360530 DOI: 10.1016/j.semcancer.2020.04.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
62 Rajput A, Thakur A, Rastogi A, Choudhury S, Kumar M. Computational identification of repurposed drugs against viruses causing epidemics and pandemics via drug-target network analysis. Comput Biol Med 2021;136:104677. [PMID: 34332351 DOI: 10.1016/j.compbiomed.2021.104677] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, Griffiths C, Martin D, Boger E, Morell RJ, Hoa M. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci 2019;12:316. [PMID: 31920542 DOI: 10.3389/fnmol.2019.00316] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
64 Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Drug Repositioning for Effective Prostate Cancer Treatment. Front Physiol 2018;9:500. [PMID: 29867548 DOI: 10.3389/fphys.2018.00500] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
65 Mamoshina P, Ojomoko L, Yanovich Y, Ostrovski A, Botezatu A, Prikhodko P, Izumchenko E, Aliper A, Romantsov K, Zhebrak A, Ogu IO, Zhavoronkov A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018;9:5665-90. [PMID: 29464026 DOI: 10.18632/oncotarget.22345] [Cited by in Crossref: 140] [Cited by in F6Publishing: 45] [Article Influence: 28.0] [Reference Citation Analysis]
66 Zheng C, Xu R. Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data. BMC Bioinformatics 2018;19:500. [PMID: 30591027 DOI: 10.1186/s12859-018-2468-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
67 Tripathi N, Goshisht MK, Sahu SK, Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Mol Divers 2021;25:1643-64. [PMID: 34110579 DOI: 10.1007/s11030-021-10237-z] [Reference Citation Analysis]
68 Mathai N, Chen Y, Kirchmair J. Validation strategies for target prediction methods. Brief Bioinform 2020;21:791-802. [PMID: 31220208 DOI: 10.1093/bib/bbz026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
69 Choudhury C, Arul Murugan N, Deva Priyakumar U. Structure-based drug repurposing: traditional and advanced AI/ML-aided methods. Drug Discov Today 2022:S1359-6446(22)00112-X. [PMID: 35301148 DOI: 10.1016/j.drudis.2022.03.006] [Reference Citation Analysis]
70 Culletta G, Gulotta MR, Perricone U, Zappalà M, Almerico AM, Tutone M. Exploring the SARS-CoV-2 Proteome in the Search of Potential Inhibitors via Structure-Based Pharmacophore Modeling/Docking Approach. Computation 2020;8:77. [DOI: 10.3390/computation8030077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
71 Allegretti M, Cesta MC, Zippoli M, Beccari A, Talarico C, Mantelli F, Bucci EM, Scorzolini L, Nicastri E. Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death Differ 2021. [PMID: 34404919 DOI: 10.1038/s41418-021-00844-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]