BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Harkness EF, Astley SM, Evans D. Risk-based breast cancer screening strategies in women. Best Practice & Research Clinical Obstetrics & Gynaecology 2020;65:3-17. [DOI: 10.1016/j.bpobgyn.2019.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Baptiste M, Moinuddeen SS, Soliz CL, Ehsan H, Kaneko G. Making Sense of Genetic Information: The Promising Evolution of Clinical Stratification and Precision Oncology Using Machine Learning. Genes (Basel) 2021;12:722. [PMID: 34065872 DOI: 10.3390/genes12050722] [Reference Citation Analysis]
2 Lenkinski RE. Improving the Accuracy of Screening Dense Breasted Women for Breast Cancer By Combining Clinically Based Risk Assessment Models with Ultrasound Imaging. Acad Radiol 2021:S1076-6332(21)00433-5. [PMID: 34702674 DOI: 10.1016/j.acra.2021.09.019] [Reference Citation Analysis]
3 Freitas DLD, Câmara IM, Silva PP, Wanderley NRS, Alves MBC, Morais CLM, Martin FL, Lajus TBP, Lima KMG. Spectrochemical analysis of liquid biopsy harnessed to multivariate analysis towards breast cancer screening. Sci Rep 2020;10:12818. [PMID: 32733086 DOI: 10.1038/s41598-020-69800-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Lyburn ID, Pinder SE. Screening detects a myriad of breast disease - refining practice will increase effectiveness and reduce harm. Br J Radiol 2020;93:20200135. [PMID: 32816520 DOI: 10.1259/bjr.20200135] [Reference Citation Analysis]
5 Xie J, Li Y, Qiu M, Liu X, Zhou S, Jiang J. Risk factors and nursing countermeasures of postoperative pulmonary infection in patients with breast cancer: A retrospective analysis. Medicine (Baltimore) 2021;100:e26952. [PMID: 34664826 DOI: 10.1097/MD.0000000000026952] [Reference Citation Analysis]
6 Wang H, Liu H, Zhao L, Luo S, Akinyemiju T, Hwang S, Yue Y, Wei Q. Association of genetic variants of FBXO32 and FOXO6 in the FOXO pathway with breast cancer risk. Mol Carcinog 2021. [PMID: 34197655 DOI: 10.1002/mc.23331] [Reference Citation Analysis]
7 Pederson HJ, Pruthi S. Personalized Screening and Prevention Based on Genetic Risk of Breast Cancer. Curr Breast Cancer Rep. [DOI: 10.1007/s12609-022-00443-5] [Reference Citation Analysis]
8 Clift AK, Dodwell D, Lord S, Petrou S, Brady SM, Collins GS, Hippisley-Cox J. The current status of risk-stratified breast screening. Br J Cancer 2021. [PMID: 34703006 DOI: 10.1038/s41416-021-01550-3] [Reference Citation Analysis]
9 Bianchi VE, Bresciani E, Meanti R, Rizzi L, Omeljaniuk RJ, Torsello A. The role of androgens in women's health and wellbeing. Pharmacol Res 2021;171:105758. [PMID: 34242799 DOI: 10.1016/j.phrs.2021.105758] [Reference Citation Analysis]
10 Chen R, Zheng R, Zhou J, Li M, Shao D, Li X, Wang S, Wei W. Risk Prediction Model for Esophageal Cancer Among General Population: A Systematic Review. Front Public Health 2021;9:680967. [PMID: 34926362 DOI: 10.3389/fpubh.2021.680967] [Reference Citation Analysis]
11 Elieh Ali Komi D, Shekari N, Soofian-Kordkandi P, Javadian M, Shanehbandi D, Baradaran B, Kazemi T. Docosahexaenoic acid (DHA) and linoleic acid (LA) modulate the expression of breast cancer involved miRNAs in MDA-MB-231 cell line. Clin Nutr ESPEN 2021;46:477-83. [PMID: 34857238 DOI: 10.1016/j.clnesp.2021.09.006] [Reference Citation Analysis]
12 Dunlop K, Rankin NM, Smit AK, Salgado Z, Newson AJ, Keogh L, Cust AE. Acceptability of risk-stratified population screening across cancer types: Qualitative interviews with the Australian public. Health Expect 2021;24:1326-36. [PMID: 33974726 DOI: 10.1111/hex.13267] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Lainetti PF, Leis-Filho AF, Laufer-Amorim R, Battazza A, Fonseca-Alves CE. Mechanisms of Resistance to Chemotherapy in Breast Cancer and Possible Targets in Drug Delivery Systems. Pharmaceutics 2020;12:E1193. [PMID: 33316872 DOI: 10.3390/pharmaceutics12121193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Huo L, Tan Y, Wang S, Geng C, Li Y, Ma X, Wang B, He Y, Yao C, Ouyang T. Machine Learning Models to Improve the Differentiation Between Benign and Malignant Breast Lesions on Ultrasound: A Multicenter External Validation Study. Cancer Manag Res 2021;13:3367-79. [PMID: 33889025 DOI: 10.2147/CMAR.S297794] [Reference Citation Analysis]
15 Zheng Y, Wang K, Li N, Zhang Q, Chen F, Li M. Prognostic and Immune Implications of a Novel Pyroptosis-Related Five-Gene Signature in Breast Cancer. Front Surg 2022;9:837848. [DOI: 10.3389/fsurg.2022.837848] [Reference Citation Analysis]