BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mosadegh B, Lockett MR, Minn KT, Simon KA, Gilbert K, Hillier S, Newsome D, Li H, Hall AB, Boucher DM, Eustace BK, Whitesides GM. A paper-based invasion assay: Assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials 2015;52:262-71. [DOI: 10.1016/j.biomaterials.2015.02.012] [Cited by in Crossref: 103] [Cited by in F6Publishing: 92] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Gao B, Liu H, Gu Z. Flourishing Smart Flexible Membranes Beyond Paper. Anal Chem 2019;91:4224-34. [DOI: 10.1021/acs.analchem.9b00743] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
2 Wang L, Xu C, Zhu Y, Yu Y, Sun N, Zhang X, Feng K, Qin J. Human induced pluripotent stem cell-derived beating cardiac tissues on paper. Lab Chip 2015;15:4283-90. [DOI: 10.1039/c5lc00919g] [Cited by in Crossref: 44] [Cited by in F6Publishing: 5] [Article Influence: 6.3] [Reference Citation Analysis]
3 Chen X, Lan J, Liu Y, Li L, Yan L, Xia Y, Wu F, Li C, Li S, Chen J. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron 2018;102:582-8. [PMID: 29241062 DOI: 10.1016/j.bios.2017.12.012] [Cited by in Crossref: 77] [Cited by in F6Publishing: 66] [Article Influence: 15.4] [Reference Citation Analysis]
4 Boyce MW, Kenney RM, Truong AS, Lockett MR. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors. Anal Bioanal Chem 2016;408:2985-92. [DOI: 10.1007/s00216-015-9189-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
5 Rodenhizer D, Dean T, Xu B, Cojocari D, Mcguigan AP. A three-dimensional engineered heterogeneous tumor model for assessing cellular environment and response. Nat Protoc 2018;13:1917-57. [DOI: 10.1038/s41596-018-0022-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
6 Camci-unal G, Newsome D, Eustace BK, Whitesides GM. Fibroblasts Enhance Migration of Human Lung Cancer Cells in a Paper-Based Coculture System. Adv Healthcare Mater 2016;5:641-7. [DOI: 10.1002/adhm.201500709] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
7 Lee Y, Lee G, Cho M, Park J. Design criteria and standardization of a microfluidic cell culture system for investigating cellular migration. J Micromech Microeng 2019;29:043003. [DOI: 10.1088/1361-6439/ab0796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, Bloch J, Whitesides GM. Electrically Activated Paper Actuators. Adv Funct Mater 2016;26:2446-53. [DOI: 10.1002/adfm.201505123] [Cited by in Crossref: 108] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
9 Ornell KJ, Mistretta KS, Ralston CQ, Coburn JM. Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomater Sci 2021;9:1272-90. [PMID: 33336667 DOI: 10.1039/d0bm01153c] [Reference Citation Analysis]
10 Almela T, Tayebi L, Moharamzadeh K. 3D Bioprinting for In Vitro Models of Oral Cancer: Toward Development and Validation. Bioprinting 2021;22:e00132. [PMID: 34368488 DOI: 10.1016/j.bprint.2021.e00132] [Reference Citation Analysis]
11 Shin S, Kwak H, Hyun J. Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing. Carbohydr Polym 2019;225:115235. [PMID: 31521297 DOI: 10.1016/j.carbpol.2019.115235] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
12 Kenney RM, Boyce MW, Truong AS, Bagnell CR, Lockett MR. Real-time imaging of cancer cell chemotaxis in paper-based scaffolds. Analyst 2016;141:661-8. [PMID: 26548584 DOI: 10.1039/c5an01787d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
13 DeChiara NS, Wilson DJ, Mace CR. An Open Software Platform for the Automated Design of Paper-Based Microfluidic Devices. Sci Rep 2017;7:16224. [PMID: 29176646 DOI: 10.1038/s41598-017-16542-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
14 Wu Y, Gao Q, Nie J, Fu J, He Y. From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics with Integrated Continuous Perfusion. ACS Biomater Sci Eng 2017;3:601-7. [DOI: 10.1021/acsbiomaterials.7b00084] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
15 Albritton JL, Miller JS. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech 2017;10:3-14. [PMID: 28067628 DOI: 10.1242/dmm.025049] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 16.8] [Reference Citation Analysis]
16 Wang LX, Zhou Y, Fu JJ, Lu Z, Yu L. Separation and Characterization of Prostate Cancer Cell Subtype according to Their Motility Using a Multi-Layer CiGiP Culture. Micromachines (Basel) 2018;9:E660. [PMID: 30558236 DOI: 10.3390/mi9120660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Liu P, Fu L, Song Z, Man M, Yuan H, Zheng X, Kang Q, Shen D, Song J, Li B, Chen L. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells. Analyst 2021;146:5255-63. [PMID: 34324622 DOI: 10.1039/d1an00927c] [Reference Citation Analysis]
18 Fry RC, Bangma J, Szilagyi J, Rager JE. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol Appl Pharmacol 2019;378:114635. [PMID: 31233757 DOI: 10.1016/j.taap.2019.114635] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
19 He M, Zhang K, Chen G, Tian J, Su B. Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices. ACS Appl Mater Interfaces 2017;9:16466-73. [DOI: 10.1021/acsami.7b02433] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
20 Mosadegh B. Stackable micropatterned hydrogels for analysis of thick tissues in vitro. Biotechnol J 2016;11:451-2. [PMID: 26748642 DOI: 10.1002/biot.201500562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
21 Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers (Basel) 2021;13:2970. [PMID: 34199324 DOI: 10.3390/cancers13122970] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017;6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
23 Um E, Oh JM, Granick S, Cho YK. Cell migration in microengineered tumor environments. Lab Chip 2017;17:4171-85. [PMID: 28971203 DOI: 10.1039/c7lc00555e] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
24 Nguyen B, Graham PJ, Rochman CM, Sinton D. A Platform for High-Throughput Assessments of Environmental Multistressors. Adv Sci (Weinh) 2018;5:1700677. [PMID: 29721416 DOI: 10.1002/advs.201700677] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
25 Truong AS, Lockett MR. Oxygen as a chemoattractant: confirming cellular hypoxia in paper-based invasion assays. Analyst 2016;141:3874-82. [PMID: 27138213 DOI: 10.1039/c6an00630b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
26 Too NSH, Ho NCW, Adine C, Iyer NG, Fong ELS. Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021;175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, Singh S, Tavana H, Mosadegh B, Nikkhah M. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 2017;133:176-207. [DOI: 10.1016/j.biomaterials.2017.04.017] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 12.2] [Reference Citation Analysis]
28 Liu Z, Xu W, Hou Z, Wu Z. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility. Micromachines (Basel) 2016;7:E201. [PMID: 30404375 DOI: 10.3390/mi7110201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
29 Chittiboyina S, Rahimi R, Atrian F, Ochoa M, Ziaie B, Lelièvre SA. Gradient-on-a-Chip with Reactive Oxygen Species Reveals Thresholds in the Nucleus Response of Cancer Cells Depending on the Matrix Environment. ACS Biomater Sci Eng 2018;4:432-45. [PMID: 33418734 DOI: 10.1021/acsbiomaterials.7b00087] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
30 Bunge F, van den Driesche S, Vellekoop MJ. PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide. Biomed Microdevices 2018;20. [DOI: 10.1007/s10544-018-0343-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
31 Entschladen F, Thyssen DA, Drell DW. Re-Use of Established Drugs for Anti-Metastatic Indications. Cells 2016;5:E2. [PMID: 26771645 DOI: 10.3390/cells5010002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
32 Singh M, Dahal A, Brastianos PK. Preclinical Solid Tumor Models to Study Novel Therapeutics in Brain Metastases. Curr Protoc 2021;1:e284. [PMID: 34762346 DOI: 10.1002/cpz1.284] [Reference Citation Analysis]
33 Nie J, Gao Q, Qiu J, Sun M, Liu A, Shao L, Fu J, Zhao P, He Y. 3D printed Lego ® -like modular microfluidic devices based on capillary driving. Biofabrication 2018;10:035001. [DOI: 10.1088/1758-5090/aaadd3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
34 Vu TQ, de Castro RM, Qin L. Bridging the gap: microfluidic devices for short and long distance cell-cell communication. Lab Chip 2017;17:1009-23. [PMID: 28205652 DOI: 10.1039/c6lc01367h] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
35 Kenney RM, Lloyd CC, Whitman NA, Lockett MR. 3D cellular invasion platforms: how do paper-based cultures stack up? Chem Commun (Camb) 2017;53:7194-210. [PMID: 28621775 DOI: 10.1039/c7cc02357j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 4.8] [Reference Citation Analysis]
36 Dermutz H, Thompson-steckel G, Forró C, de Lange V, Dorwling-carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017;7:39359-71. [DOI: 10.1039/c7ra00971b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
37 Nam H, Funamoto K, Jeon JS. Cancer cell migration and cancer drug screening in oxygen tension gradient chip. Biomicrofluidics 2020;14:044107. [PMID: 32742536 DOI: 10.1063/5.0011216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Deygas M, Gadet R, Gillet G, Rimokh R, Gonzalo P, Mikaelian I. Redox regulation of EGFR steers migration of hypoxic mammary cells towards oxygen. Nat Commun 2018;9:4545. [PMID: 30382089 DOI: 10.1038/s41467-018-06988-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
39 Ng K, Gao B, Yong KW, Li Y, Shi M, Zhao X, Li Z, Zhang X, Pingguan-murphy B, Yang H, Xu F. Paper-based cell culture platform and its emerging biomedical applications. Materials Today 2017;20:32-44. [DOI: 10.1016/j.mattod.2016.07.001] [Cited by in Crossref: 78] [Cited by in F6Publishing: 38] [Article Influence: 15.6] [Reference Citation Analysis]
40 Tian C, Tu Q, Liu W, Wang J. Recent advances in microfluidic technologies for organ-on-a-chip. TrAC Trends in Analytical Chemistry 2019;117:146-56. [DOI: 10.1016/j.trac.2019.06.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
41 Ahmed S, Bui MP, Abbas A. Paper-based chemical and biological sensors: Engineering aspects. Biosens Bioelectron 2016;77:249-63. [PMID: 26410389 DOI: 10.1016/j.bios.2015.09.038] [Cited by in Crossref: 159] [Cited by in F6Publishing: 125] [Article Influence: 22.7] [Reference Citation Analysis]
42 Rodenhizer D, Cojocari D, Wouters BG, McGuigan AP. Development of TRACER: tissue roll for analysis of cellular environment and response. Biofabrication 2016;8:045008. [PMID: 27754980 DOI: 10.1088/1758-5090/8/4/045008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
43 Tang R, Liu L, Li M, Yao X, Yang Y, Zhang S, Li F. Transparent Microcrystalline Cellulose/Polyvinyl Alcohol Paper as a New Platform for Three-Dimensional Cell Culture. Anal Chem 2020;92:14219-27. [PMID: 32962346 DOI: 10.1021/acs.analchem.0c03458] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
44 Verjans ET, Doijen J, Luyten W, Landuyt B, Schoofs L. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? J Cell Physiol. 2018;233:2993-3003. [PMID: 28618001 DOI: 10.1002/jcp.26052] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 15.6] [Reference Citation Analysis]
45 Fu JJ, Zhou Y, Shi XX, Kang YJ, Lu ZS, Li Y, Li CM, Yu L. Spontaneous formation of tumor spheroid on a hydrophilic filter paper for cancer stem cell enrichment. Colloids Surf B Biointerfaces 2019;174:426-34. [PMID: 30481703 DOI: 10.1016/j.colsurfb.2018.11.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
46 Son J, Bang MS, Park J. Hand-Maneuverable Collagen Sheet with Micropatterns for 3D Modular Tissue Engineering. ACS Biomater Sci Eng 2019;5:339-45. [DOI: 10.1021/acsbiomaterials.8b01066] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Karbalaei A, Cho HJ. Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. Micromachines (Basel) 2018;9:E149. [PMID: 30424083 DOI: 10.3390/mi9040149] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Mosley GL, Nguyen P, Wu BM, Kamei DT. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. Lab Chip 2016;16:2871-81. [DOI: 10.1039/c6lc00518g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
49 Rahimi R, Htwe SS, Ochoa M, Donaldson A, Zieger M, Sood R, Tamayol A, Khademhosseini A, Ghaemmaghami AM, Ziaie B. A paper-based in vitro model for on-chip investigation of the human respiratory system. Lab Chip 2016;16:4319-25. [PMID: 27731881 DOI: 10.1039/c6lc00866f] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Liu MM, Liu H, Li SH, Zhong Y, Chen Y, Guo ZZ, Chen W, Lin XH, Lei Y, Liu AL. Integrated paper-based 3D platform for long-term cell culture and in situ cell viability monitoring of Alzheimer's disease cell model. Talanta 2021;223:121738. [PMID: 33298264 DOI: 10.1016/j.talanta.2020.121738] [Reference Citation Analysis]
51 Yahara D, Yoshida T, Enokida Y, Takahashi E. Directional Migration of MDA-MB-231 Cells Under Oxygen Concentration Gradients. Adv Exp Med Biol 2016;923:129-34. [PMID: 27526134 DOI: 10.1007/978-3-319-38810-6_17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
52 Chowkwale M, Mahler GJ, Huang P, Murray BT. A multiscale in silico model of endothelial to mesenchymal transformation in a tumor microenvironment. J Theor Biol 2019;480:229-40. [PMID: 31430445 DOI: 10.1016/j.jtbi.2019.08.012] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
53 Trouillon R, Gijs MAM. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv 2016;6:31069-73. [DOI: 10.1039/c6ra02487d] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wu H, Lee T, Ko P, Chiang H, Peng C, Tung Y. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro. J Micromech Microeng 2018;28:043001. [DOI: 10.1088/1361-6439/aaa993] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
55 Liu P, Li B, Fu L, Huang Y, Man M, Qi J, Sun X, Kang Q, Shen D, Chen L. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell’s Apoptosis and Intracellular Cross-Talk. ACS Sens 2020;5:464-73. [DOI: 10.1021/acssensors.9b02205] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
56 Hol FJH, Whitesides GM, Dekker C. Bacteria-in-paper, a versatile platform to study bacterial ecology. Ecol Lett 2019;22:1316-23. [PMID: 31099139 DOI: 10.1111/ele.13274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Kim MH, Green SD, Lin CC, Konig H. Engineering Tools for Regulating Hypoxia in Tumour Models. J Cell Mol Med 2021;25:7581-92. [PMID: 34213838 DOI: 10.1111/jcmm.16759] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Truong AS, Lochbaum CA, Boyce MW, Lockett MR. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR. Anal Chem 2015;87:11263-70. [PMID: 26507077 DOI: 10.1021/acs.analchem.5b02362] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
59 Wang L, Li Z, Xu C, Qin J. Bioinspired Engineering of Organ-on-Chip Devices. Adv Exp Med Biol 2019;1174:401-40. [PMID: 31713207 DOI: 10.1007/978-981-13-9791-2_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Wan L, Neumann CA, LeDuc PR. Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors. Lab Chip 2020;20:873-88. [PMID: 32025687 DOI: 10.1039/c9lc00550a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 20.0] [Reference Citation Analysis]
61 Ding C, Chen X, Kang Q, Yan X. Biomedical Application of Functional Materials in Organ-on-a-Chip. Front Bioeng Biotechnol 2020;8:823. [PMID: 32793573 DOI: 10.3389/fbioe.2020.00823] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
62 Camci-Unal G, Laromaine A, Hong E, Derda R, Whitesides GM. Biomineralization Guided by Paper Templates. Sci Rep 2016;6:27693. [PMID: 27277575 DOI: 10.1038/srep27693] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
63 Simon KA, Warren NJ, Mosadegh B, Mohammady MR, Whitesides GM, Armes SP. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures. Biomacromolecules 2015;16:3952-8. [DOI: 10.1021/acs.biomac.5b01266] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
64 Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol. 2016;4:12. [PMID: 26904541 DOI: 10.3389/fbioe.2016.00012] [Cited by in Crossref: 282] [Cited by in F6Publishing: 279] [Article Influence: 47.0] [Reference Citation Analysis]
65 Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 2016;163:94-108. [PMID: 27063403 DOI: 10.1016/j.pharmthera.2016.03.013] [Cited by in Crossref: 354] [Cited by in F6Publishing: 324] [Article Influence: 59.0] [Reference Citation Analysis]
66 Roy M, Finley SD. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput Biol 2019;15:e1007053. [PMID: 31185009 DOI: 10.1371/journal.pcbi.1007053] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
67 Kenney RM, Loeser A, Whitman NA, Lockett MR. Paper-based Transwell assays: an inexpensive alternative to study cellular invasion. Analyst 2018;144:206-11. [PMID: 30328422 DOI: 10.1039/c8an01157e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
68 Ledvina V, Klepárník K, Legartová S, Bártová E. A device for investigation of natural cell mobility and deformability. Electrophoresis 2020;41:1238-44. [PMID: 32358820 DOI: 10.1002/elps.201900357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Phan H, Dinh T, Nguyen T, Vatani A, Md Foisal AR, Qamar A, Kermany AR, Dao DV, Nguyen N. Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite. Appl Phys Lett 2017;110:144101. [DOI: 10.1063/1.4979701] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
70 Lloyd CC, Boyce MW, Lockett MR. Paper-based Invasion Assays for Quantifying Cellular Movement in Three-dimensional Tissue-like Structures. Curr Protoc Chem Biol 2017;9:75-95. [PMID: 28628202 DOI: 10.1002/cpch.22] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
71 Castiaux AD, Spence DM, Martin RS. Review of 3D Cell Culture with Analysis in Microfluidic Systems. Anal Methods 2019;11:4220-32. [PMID: 32051693 DOI: 10.1039/c9ay01328h] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
72 Michael IJ, Kumar S, Oh JM, Kim D, Kim J, Cho YK. Surface-Engineered Paper Hanging Drop Chip for 3D Spheroid Culture and Analysis. ACS Appl Mater Interfaces 2018;10:33839-46. [PMID: 30192134 DOI: 10.1021/acsami.8b08778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
73 Ma J, Yan S, Miao C, Li L, Shi W, Liu X, Luo Y, Liu T, Lin B, Wu W, Lu Y. Paper Microfluidics for Cell Analysis. Adv Healthc Mater 2019;8:e1801084. [PMID: 30474359 DOI: 10.1002/adhm.201801084] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
74 Wu X, Suvarnapathaki S, Walsh K, Camci-unal G. Paper as a scaffold for cell cultures: Teaching an old material new tricks. MRS Communications 2018;8:1-14. [DOI: 10.1557/mrc.2018.8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
75 Tobias F, McIntosh JC, LaBonia GJ, Boyce MW, Lockett MR, Hummon AB. Developing a Drug Screening Platform: MALDI-Mass Spectrometry Imaging of Paper-Based Cultures. Anal Chem 2019;91:15370-6. [PMID: 31755703 DOI: 10.1021/acs.analchem.9b03536] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
76 Yin T, Cai H, Liu J, Cui B, Wang L, Yin L, Zhou J, Huo M. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel. Eur J Pharm Sci 2016;83:79-87. [PMID: 26699227 DOI: 10.1016/j.ejps.2015.12.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
77 McIntosh JC, Yang L, Wang T, Zhou H, Lockett MR, Oldenburg AL. Tracking the invasion of breast cancer cells in paper-based 3D cultures by OCT motility analysis. Biomed Opt Express 2020;11:3181-94. [PMID: 32637249 DOI: 10.1364/BOE.382911] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Huang K, Castiaux A, Podicheti R, Rusch DB, Martin RS, Baker LA. A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-brain Barrier Model. Small Methods 2021;5:2100592. [PMID: 34541301 DOI: 10.1002/smtd.202100592] [Reference Citation Analysis]
79 Pradhan S, Hassani I, Clary JM, Lipke EA. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. Tissue Eng Part B Rev 2016;22:470-84. [PMID: 27302080 DOI: 10.1089/ten.TEB.2015.0567] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
80 Olmedo-Suárez MÁ, Sekiguchi T, Takano A, Cañizares-Macías MDP, Futai N. Integrated On-Chip 3D Vascular Network Culture under Hypoxia. Micromachines (Basel) 2020;11:E475. [PMID: 32365889 DOI: 10.3390/mi11050475] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Kim HN, Habbit NL, Su C, Choi N, Ahn EH, Lipke EA, Kim D. Microphysiological Systems as Enabling Tools for Modeling Complexity in the Tumor Microenvironment and Accelerating Cancer Drug Development. Adv Funct Mater 2019;29:1807553. [DOI: 10.1002/adfm.201807553] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
82 Rodenhizer D, Dean T, D'arcangelo E, Mcguigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthcare Mater 2018;7:1701174. [DOI: 10.1002/adhm.201701174] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
83 Boyce MW, Simke WC, Kenney RM, Lockett MR. Generating linear oxygen gradients across 3D cell cultures with block-layered oxygen controlled chips (BLOCCs). Anal Methods 2020;12:18-24. [PMID: 32190125 DOI: 10.1039/C9AY01690B] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
84 Sleeboom JJF, Toonder JMJD, Sahlgren CM. MDA-MB-231 Breast Cancer Cells and Their CSC Population Migrate Towards Low Oxygen in a Microfluidic Gradient Device. Int J Mol Sci 2018;19:E3047. [PMID: 30301222 DOI: 10.3390/ijms19103047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
85 Takahashi E, Yamaguchi D, Yamaoka Y. A Relatively Small Gradient of Extracellular pH Directs Migration of MDA-MB-231 Cells In Vitro. Int J Mol Sci 2020;21:E2565. [PMID: 32272744 DOI: 10.3390/ijms21072565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Cornelison RC, Munson JM. Perspective on Translating Biomaterials Into Glioma Therapy: Lessons From in vitro Models. Front Mater 2018;5:27. [PMID: 30911536 DOI: 10.3389/fmats.2018.00027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
87 Jiang H, Yang J, Wan K, Jiang D, Jin C. Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection. ACS Sens 2020;5:1325-35. [PMID: 32274922 DOI: 10.1021/acssensors.9b02508] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
88 Cramer SM, Larson TS, Lockett MR. Tissue Papers: Leveraging Paper-Based Microfluidics for the Next Generation of 3D Tissue Models. Anal Chem 2019;91:10916-26. [PMID: 31356054 DOI: 10.1021/acs.analchem.9b02102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
89 Lin D, Chen X, Lin Z, Lin J, Liu Y, Liu D. Paper-supported co-culture system for dynamic investigations of the lung-tropic migration of breast cancer cells. Biomed Mater 2021;16:025028. [PMID: 33075760 DOI: 10.1088/1748-605X/abc28c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater Sci Eng 2021;7:2880-99. [PMID: 34275293 DOI: 10.1021/acsbiomaterials.0c00640] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
91 Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J. Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 2017;9:4366-82. [PMID: 28155933 DOI: 10.1039/c6nr08846e] [Cited by in Crossref: 74] [Cited by in F6Publishing: 8] [Article Influence: 18.5] [Reference Citation Analysis]
92 Boyce MW, LaBonia GJ, Hummon AB, Lockett MR. Assessing chemotherapeutic effectiveness using a paper-based tumor model. Analyst 2017;142:2819-27. [PMID: 28702529 DOI: 10.1039/c7an00806f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 5.8] [Reference Citation Analysis]
93 Simon KA, Mosadegh B, Minn KT, Lockett MR, Mohammady MR, Boucher DM, Hall AB, Hillier SM, Udagawa T, Eustace BK, Whitesides GM. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials. 2016;95:47-59. [PMID: 27116031 DOI: 10.1016/j.biomaterials.2016.03.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 7.3] [Reference Citation Analysis]
94 Fernandes SC, Walz JA, Wilson DJ, Brooks JC, Mace CR. Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Anal Chem 2017;89:5654-64. [PMID: 28406607 DOI: 10.1021/acs.analchem.6b03860] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 9.4] [Reference Citation Analysis]
95 Choi G, Choi S. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers. Analyst 2015;140:5901-7. [DOI: 10.1039/c5an01200g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]