BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Burcar B, Castañeda A, Lago J, Daniel M, Pasek MA, Hud NV, Orlando TM, Menor-Salván C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario. Angew Chem Int Ed Engl 2019;58:16981-7. [PMID: 31460687 DOI: 10.1002/anie.201908272] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Pasek MA. Thermodynamics of Prebiotic Phosphorylation. Chem Rev 2020;120:4690-706. [DOI: 10.1021/acs.chemrev.9b00492] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
2 Spustova K, Köksal ES, Ainla A, Gözen I. Subcompartmentalization and Pseudo-Division of Model Protocells. Small 2021;17:e2005320. [PMID: 33230918 DOI: 10.1002/smll.202005320] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Maguire OR, Smokers IBA, Huck WTS. A physicochemical orthophosphate cycle via a kinetically stable thermodynamically activated intermediate enables mild prebiotic phosphorylations. Nat Commun 2021;12:5517. [PMID: 34535651 DOI: 10.1038/s41467-021-25555-x] [Reference Citation Analysis]
4 Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021;11:539. [PMID: 34207658 DOI: 10.3390/life11060539] [Reference Citation Analysis]
5 Villafañe-Barajas SA, Ruiz-Bermejo M, Rayo-Pizarroso P, Gálvez-Martínez S, Mateo-Martí E, Colín-García M. A Lizardite-HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life (Basel) 2021;11:661. [PMID: 34357033 DOI: 10.3390/life11070661] [Reference Citation Analysis]
6 Ritson DJ, Mojzsis SJ, Sutherland JD. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat Geosci 2020;13:344-8. [PMID: 32395178 DOI: 10.1038/s41561-020-0556-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
7 Fialho DM, Roche TP, Hud NV. Prebiotic Syntheses of Noncanonical Nucleosides and Nucleotides. Chem Rev 2020;120:4806-30. [PMID: 32421316 DOI: 10.1021/acs.chemrev.0c00069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
8 Lago JL, Burcar BT, Hud NV, Febrian R, Mehta C, Bracher PJ, Atlas ZD, Pasek MA. The Prebiotic Provenance of Semi-Aqueous Solvents. Orig Life Evol Biosph 2020;50:1-14. [PMID: 32388697 DOI: 10.1007/s11084-020-09595-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
9 Gull M, Omran A, Feng T, Pasek MA. Silicate-, Magnesium Ion-, and Urea-Induced Prebiotic Phosphorylation of Uridine via Pyrophosphate; Revisiting the Hot Drying Water Pool Scenario. Life (Basel) 2020;10:E122. [PMID: 32722517 DOI: 10.3390/life10080122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
10 Toner JD, Catling DC. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc Natl Acad Sci U S A 2020;117:883-8. [PMID: 31888981 DOI: 10.1073/pnas.1916109117] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]