BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol 2016;37:1192-8. [PMID: 26659341 DOI: 10.3174/ajnr.A4615] [Cited by in Crossref: 218] [Cited by in F6Publishing: 78] [Article Influence: 31.1] [Reference Citation Analysis]
Number Citing Articles
1 Latchaw RE, Albers SL. Imaging the Cervical Vasculature. Progress in Cardiovascular Diseases 2017;59:555-84. [DOI: 10.1016/j.pcad.2017.05.007] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
2 Turyanskaya A, Rauwolf M, Pichler V, Simon R, Burghammer M, Fox OJL, Sawhney K, Hofstaetter JG, Roschger A, Roschger P, Wobrauschek P, Streli C. Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF. Sci Rep 2020;10:6301. [PMID: 32286449 DOI: 10.1038/s41598-020-63325-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Williams DF. Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Front Bioeng Biotechnol 2019;7:255. [PMID: 31649926 DOI: 10.3389/fbioe.2019.00255] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
4 Roach DJ, Crémillieux Y, Fleck RJ, Brody AS, Serai SD, Szczesniak RD, Kerlakian S, Clancy JP, Woods JC. Ultrashort Echo-Time Magnetic Resonance Imaging Is a Sensitive Method for the Evaluation of Early Cystic Fibrosis Lung Disease. Ann Am Thorac Soc 2016;13:1923-31. [PMID: 27551814 DOI: 10.1513/AnnalsATS.201603-203OC] [Cited by in Crossref: 50] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
5 Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 2017;47:1345-52. [PMID: 28526896 DOI: 10.1007/s00247-017-3874-1] [Cited by in Crossref: 78] [Cited by in F6Publishing: 68] [Article Influence: 15.6] [Reference Citation Analysis]
6 Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. Materials (Basel) 2020;13:E2586. [PMID: 32517085 DOI: 10.3390/ma13112586] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
7 Bak SH, Roh HG, Moon WJ, Choi JW, An HS. Appropriate Minimal Dose of Gadobutrol for 3D Time-Resolved MRA of the Supra-Aortic Arteries: Comparison with Conventional Single-Phase High-Resolution 3D Contrast-Enhanced MRA. AJNR Am J Neuroradiol 2017;38:1383-90. [PMID: 28473338 DOI: 10.3174/ajnr.A5176] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
8 Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials (Basel) 2020;10:E1700. [PMID: 32872399 DOI: 10.3390/nano10091700] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 23.0] [Reference Citation Analysis]
9 Ngamcherdtrakul W, Morry J, Sangvanich T, Reda M, Bejan DS, Fryxell GE, Yantasee W. Removal of a gadolinium based contrast agent by a novel sorbent hemoperfusion in a chronic kidney disease (CKD) rodent model. Sci Rep 2019;9:709. [PMID: 30679698 DOI: 10.1038/s41598-018-37348-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
10 Shin SH, Kim HO, Rim KT. Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues. Saf Health Work 2019;10:409-19. [PMID: 31890323 DOI: 10.1016/j.shaw.2019.08.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
11 Li X, Xia F, Chen L, Zhang X, Mo C, Shen W. One-stop preoperative assessment of renal vessels for living donors with 3.0 T non-contrast-enhanced magnetic resonance angiography: compared with computerized tomography angiography and surgical results. Br J Radiol 2021;94:20210589. [PMID: 34558306 DOI: 10.1259/bjr.20210589] [Reference Citation Analysis]
12 Igra MS, Paling D, Wattjes MP, Connolly DJA, Hoggard N. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br J Radiol 2017;90:20160721. [PMID: 28362522 DOI: 10.1259/bjr.20160721] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
13 Clough TJ, Jiang L, Wong KL, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun 2019;10:1420. [PMID: 30926784 DOI: 10.1038/s41467-019-09342-3] [Cited by in Crossref: 90] [Cited by in F6Publishing: 57] [Article Influence: 30.0] [Reference Citation Analysis]
14 Ponrartana S, Moore MM, Chan SS, Victoria T, Dillman JR, Chavhan GB. Safety issues related to intravenous contrast agent use in magnetic resonance imaging. Pediatr Radiol 2021;51:736-47. [PMID: 33871726 DOI: 10.1007/s00247-020-04896-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hopkins SR. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches. Compr Physiol 2020;10:1155-205. [PMID: 32941684 DOI: 10.1002/cphy.c180042] [Reference Citation Analysis]
16 Baumgarten P, Quick-Weller J, Gessler F, Wagner M, Tichy J, Forster MT, Foerch C, Seifert V, Mittelbronn M, Senft C. Pre- and early postoperative GFAP serum levels in glioma and brain metastases. J Neurooncol 2018;139:541-6. [PMID: 29797180 DOI: 10.1007/s11060-018-2898-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
17 Blumfield E, Swenson DW, Iyer RS, Stanescu AL. Gadolinium-based contrast agents - review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 2019;49:448-57. [PMID: 30923876 DOI: 10.1007/s00247-018-4304-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
18 van Hoof RH, Heeneman S, Wildberger JE, Kooi ME. Dynamic Contrast-Enhanced MRI to Study Atherosclerotic Plaque Microvasculature. Curr Atheroscler Rep 2016;18:33. [PMID: 27115144 DOI: 10.1007/s11883-016-0583-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
19 Lee JY, Park JE, Kim HS, Kim SO, Oh JY, Shim WH, Jung SC, Choi CG, Kim SJ. Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: Multifactorial analysis in 385 patients. PLoS One 2017;12:e0183916. [PMID: 28859167 DOI: 10.1371/journal.pone.0183916] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
20 Mahavadi AK, Shah AH, Komotar RJ. Commentary: Optimizing Postoperative Surveillance of Pediatric Low-Grade Glioma Using Tumor Behavior Patterns. Neurosurgery 2020;86:E137-9. [PMID: 31329955 DOI: 10.1093/neuros/nyz124] [Reference Citation Analysis]
21 Wang S, Fan X, Zhang Y, Medved M, He D, Yousuf A, Jamison E, Oto A, Karczmar GS. Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI. Tomography 2019;5:260-5. [PMID: 31245547 DOI: 10.18383/j.tom.2019.00004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Hodel J, Leclerc X, Kalsoum E, Zuber M, Tamazyan R, Benadjaoud MA, Pruvo JP, Piotin M, Baharvahdat H, Zins M, Blanc R. Intracranial Arteriovenous Shunting: Detection with Arterial Spin-Labeling and Susceptibility-Weighted Imaging Combined. AJNR Am J Neuroradiol 2017;38:71-6. [PMID: 27789452 DOI: 10.3174/ajnr.A4961] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
23 Pullicino R, Radon M, Biswas S, Bhojak M, Das K. A Review of the Current Evidence on Gadolinium Deposition in the Brain. Clin Neuroradiol 2018;28:159-69. [PMID: 29523896 DOI: 10.1007/s00062-018-0678-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
24 Jacobs K, Rigdon J, Chan F, Cheng JY, Alley MT, Vasanawala S, Maskatia SA. Direct measurement of atrioventricular valve regurgitant jets using 4D flow cardiovascular magnetic resonance is accurate and reliable for children with congenital heart disease: a retrospective cohort study. J Cardiovasc Magn Reson 2020;22:33. [PMID: 32404159 DOI: 10.1186/s12968-020-00612-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Goetzl EJ, Maecker HT, Rosenberg-hasson Y, Koran LM. Altered Functional Mitochondrial Protein Levels in Plasma Neuron-Derived Extracellular Vesicles of Patients With Gadolinium Deposition. Front Toxicol 2022;3:797496. [DOI: 10.3389/ftox.2021.797496] [Reference Citation Analysis]
26 Barisano G, Bigjahan B, Metting S, Cen S, Amezcua L, Lerner A, Toga AW, Law M. Signal Hyperintensity on Unenhanced T1-Weighted Brain and Cervical Spinal Cord MR Images after Multiple Doses of Linear Gadolinium-Based Contrast Agent. AJNR Am J Neuroradiol 2019;40:1274-81. [PMID: 31345942 DOI: 10.3174/ajnr.A6148] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Reindl M, Eitel I, Reinstadler SJ. Role of Cardiac Magnetic Resonance to Improve Risk Prediction Following Acute ST-Elevation Myocardial Infarction. J Clin Med 2020;9:E1041. [PMID: 32272692 DOI: 10.3390/jcm9041041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Jayakumar S, Saravanan T, Philip J. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites. Appl Nanosci 2017;7:919-31. [DOI: 10.1007/s13204-017-0631-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
29 Lin M, Breukels V, Scheenen TWJ, Paulusse JMJ. Dynamic Nuclear Polarization of Silicon Carbide Micro- and Nanoparticles. ACS Appl Mater Interfaces 2021;13:30835-43. [PMID: 34170657 DOI: 10.1021/acsami.1c07156] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cocozza S, Russo C, Pisani A, Olivo G, Riccio E, Cervo A, Pontillo G, Feriozzi S, Veroux M, Battaglia Y, Concolino D, Pieruzzi F, Mignani R, Borrelli P, Imbriaco M, Brunetti A, Tedeschi E, Palma G. Redefining the Pulvinar Sign in Fabry Disease. AJNR Am J Neuroradiol 2017;38:2264-9. [PMID: 29051208 DOI: 10.3174/ajnr.A5420] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
31 Boto J, Guatta R, Fitsiori A, Hofmeister J, Meling TR, Vargas MI. Is Contrast Medium Really Needed for Follow-up MRI of Untreated Intracranial Meningiomas? AJNR Am J Neuroradiol 2021;42:1421-8. [PMID: 34117017 DOI: 10.3174/ajnr.A7170] [Reference Citation Analysis]
32 Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Reply. AJNR Am J Neuroradiol 2016;37:E42. [PMID: 26915565 DOI: 10.3174/ajnr.A4744] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
33 Ianniello C, Moy L, Fogarty J, Schnabel F, Adams S, Axelrod D, Axel L, Brown R, Madelin G. Multinuclear MRI to disentangle intracellular sodium concentration and extracellular volume fraction in breast cancer. Sci Rep 2021;11:5156. [PMID: 33664340 DOI: 10.1038/s41598-021-84616-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
34 Garcia J, Liu SZ, Louie AY. Biological effects of MRI contrast agents: gadolinium retention, potential mechanisms and a role for phosphorus. Philos Trans A Math Phys Eng Sci 2017;375:20170180. [PMID: 29038383 DOI: 10.1098/rsta.2017.0180] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
35 Hattingen E, Müller A, Jurcoane A, Mädler B, Ditter P, Schild H, Herrlinger U, Glas M, Kebir S. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget 2017;8:53542-51. [PMID: 28881830 DOI: 10.18632/oncotarget.18612] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
36 Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology. 2016;58:433-441. [PMID: 26873830 DOI: 10.1007/s00234-016-1658-1] [Cited by in Crossref: 88] [Cited by in F6Publishing: 71] [Article Influence: 14.7] [Reference Citation Analysis]
37 Snel GJH, Hernandez LM, Slart RHJA, Nguyen CT, Sosnovik DE, van Deursen VM, Dierckx RAJO, Velthuis BK, Borra RJH, Prakken NHJ. Validation of thoracic aortic dimensions on ECG-triggered SSFP as alternative to contrast-enhanced MRA. Eur Radiol 2020;30:5794-804. [PMID: 32506262 DOI: 10.1007/s00330-020-06963-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Vergauwen E, Vanbinst AM, Brussaard C, Janssens P, De Clerck D, Van Lint M, Houtman AC, Michel O, Keymolen K, Lefevere B, Bohler S, Michielsen D, Jansen AC, Van Velthoven V, Gläsker S. Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes. Hered Cancer Clin Pract 2018;16:2. [PMID: 29312473 DOI: 10.1186/s13053-017-0084-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
39 Schneider T, Kuhne JF, Bittrich P, Schroeder J, Magnus T, Mohme M, Grosser M, Schoen G, Fiehler J, Siemonsen S. Edema is not a reliable diagnostic sign to exclude small brain metastases. PLoS One 2017;12:e0177217. [PMID: 28493907 DOI: 10.1371/journal.pone.0177217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
40 Markovic S, Roussel T, Neeman M, Frydman L. Deuterium Magnetic Resonance Imaging and the Discrimination of Fetoplacental Metabolism in Normal and L-NAME-Induced Preeclamptic Mice. Metabolites 2021;11:376. [PMID: 34200839 DOI: 10.3390/metabo11060376] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Sertorio F, Wong MCY, Incarbone V, Pistorio A, Mattioli G, Magnano GM, Damasio MB. Non-contrast-enhanced magnetic resonance angiography for detecting crossing renal vessels in infants and young children: comparison with contrast-enhanced angiography and surgical findings. Pediatr Radiol 2019;49:105-13. [PMID: 30284006 DOI: 10.1007/s00247-018-4252-3] [Reference Citation Analysis]
42 Kirchgesner T, Stoenoiu M, Durez P, Michoux N, Vande Berg B. MRI of Hands with Early Rheumatoid Arthritis: Usefulness of Three-Point Dixon Sequences to Quantitatively Assess Disease Activity. Journal of the Belgian Society of Radiology 2022;106:1. [DOI: 10.5334/jbsr.2692] [Reference Citation Analysis]
43 Starsich FH, Eberhardt C, Keevend K, Boss A, Hirt AM, Herrmann IK, Pratsinis SE. Reduced Magnetic Coupling in Ultrasmall Iron Oxide T 1 MRI Contrast Agents. ACS Appl Bio Mater 2018;1:783-91. [DOI: 10.1021/acsabm.8b00244] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
44 Riesenkampff E, Luining W, Seed M, Chungsomprasong P, Manlhiot C, Elders B, McCrindle BW, Yoo SJ, Grosse-Wortmann L. Increased left ventricular myocardial extracellular volume is associated with longer cardiopulmonary bypass times, biventricular enlargement and reduced exercise tolerance in children after repair of Tetralogy of Fallot. J Cardiovasc Magn Reson 2016;18:75. [PMID: 27782857 DOI: 10.1186/s12968-016-0290-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
45 Zhang X, Wang W, Liu T, Qi Y, Ma L. The effects of three different contrast agents (Gd-BOPTA, Gd-DTPA, and Gd-DOTA) on brachial plexus magnetic resonance imaging. Ann Transl Med 2021;9:344. [PMID: 33708971 DOI: 10.21037/atm-21-348] [Reference Citation Analysis]
46 Guo H, Kommidi H, Maachani UB, Voronina JC, Zhang W, Magge RS, Ivanidze J, Wu AP, Souweidane MM, Aras O, Ting R. An [18F]-Positron Emitting Fluorophore Allows Safe Evaluation of Small Molecule Distribution in the CSF, CSF Fistulas, and CNS Device Placement. Mol Pharm 2019;16:3636-46. [PMID: 31290330 DOI: 10.1021/acs.molpharmaceut.9b00485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Bickel H, Polanec SH, Wengert G, Pinker K, Bogner W, Helbich TH, Baltzer PA. Diffusion-Weighted MRI of Breast Cancer: Improved Lesion Visibility and Image Quality Using Synthetic b-Values. J Magn Reson Imaging 2019;50:1754-61. [PMID: 31136044 DOI: 10.1002/jmri.26809] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Talati P, Rane S, Donahue MJ, Heckers S. Hippocampal arterial cerebral blood volume in early psychosis. Psychiatry Res Neuroimaging 2016;256:21-5. [PMID: 27644028 DOI: 10.1016/j.pscychresns.2016.09.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
49 Huang J, Tang Z, Guo M, Wang Y, Wang Z, Wu Z, Zhang P. Incorporation of Gadolinium Oxide and Gadolinium Oxysulfide Microspheres: MRI/CT Monitoring and Promotion of Osteogenic/Chondrogenic Differentiation for Bone Implants. ChemNanoMat 2020;6:1819-32. [DOI: 10.1002/cnma.202000476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Devreux M, Henoumont C, Dioury F, Boutry S, Vacher O, Elst LV, Port M, Muller RN, Sandre O, Laurent S. Mn2+ Complexes with Pyclen-Based Derivatives as Contrast Agents for Magnetic Resonance Imaging: Synthesis and Relaxometry Characterization. Inorg Chem 2021;60:3604-19. [PMID: 33625836 DOI: 10.1021/acs.inorgchem.0c03120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv Sci (Weinh) 2021;8:2002545. [PMID: 33854877 DOI: 10.1002/advs.202002545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
52 Funck-Brentano C, Felices M, Le Fur N, Dubourdieu C, Desché P, Vanhoutte F, Voiriot P. Randomized study of the effect of gadopiclenol, a new gadolinium-based contrast agent, on the QTc interval in healthy subjects. Br J Clin Pharmacol 2020;86:2174-81. [PMID: 32302009 DOI: 10.1111/bcp.14309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Zhang H, Tang X, Lv Y, Hu D, Sun J, Wang Y, Zhou J, Peng Y. Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. Biomed Res Int 2020;2020:6418343. [PMID: 32509865 DOI: 10.1155/2020/6418343] [Reference Citation Analysis]
54 Maecker HT, Wang W, Rosenberg-Hasson Y, Semelka RC, Hickey J, Koran LM. An initial investigation of serum cytokine levels in patients with gadolinium retention. Radiol Bras 2020;53:306-13. [PMID: 33071374 DOI: 10.1590/0100-3984.2019.0075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Chazot A, Barrat J, Gaha M, Jomaah R, Ognard J, Ben Salem D. Brain MRIs make up the bulk of the gadolinium footprint in medical imaging. Journal of Neuroradiology 2020;47:259-65. [DOI: 10.1016/j.neurad.2020.03.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
56 Kang H, Hii M, Le M, Tam R, Riddehough A, Traboulsee A, Kolind S, Freedman MS, Li DKB. Gadolinium Deposition in Deep Brain Structures: Relationship with Dose and Ionization of Linear Gadolinium-Based Contrast Agents. AJNR Am J Neuroradiol 2018;39:1597-603. [PMID: 30139752 DOI: 10.3174/ajnr.A5751] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
57 Chatterjee A, He D, Fan X, Wang S, Szasz T, Yousuf A, Pineda F, Antic T, Mathew M, Karczmar GS, Oto A. Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer. Acad Radiol 2018;25:349-58. [PMID: 29167070 DOI: 10.1016/j.acra.2017.10.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
58 Blumfield E, Moore MM, Drake MK, Goodman TR, Lewis KN, Meyer LT, Ngo TD, Sammet C, Stanescu AL, Swenson DW, Slovis TL, Iyer RS. Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report. Pediatr Radiol 2017;47:665-73. [PMID: 28283728 DOI: 10.1007/s00247-017-3807-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
59 Kanda T, Oba H, Toyoda K, Furui S. Macrocyclic Gadolinium-Based Contrast Agents Do Not Cause Hyperintensity in the Dentate Nucleus. AJNR Am J Neuroradiol 2016;37:E41. [PMID: 26915573 DOI: 10.3174/ajnr.A4710] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
60 Liu C, Li M, Xiao H, Li T, Li W, Zhang J, Teng X, Cai J. Advances in MRI‐guided precision radiotherapy. Precision Radiation Oncology. [DOI: 10.1002/pro6.1143] [Reference Citation Analysis]
61 Pariente D, Franchi-Abella S, Cellier C, Branchereau S, Taque S, Laithier V, Aerts I, Chardot C, Brugières L. Another point of view on 2017 PRETEXT. Pediatr Radiol 2018;48:1817-9. [PMID: 30109379 DOI: 10.1007/s00247-018-4227-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
62 Ha FJ, Agarwal S, Tweed K, Palmer SC, Adams HS, Thillai M, Williams L. Imaging in Suspected Cardiac Sarcoidosis: A Diagnostic Challenge. Curr Cardiol Rev 2020;16:90-7. [PMID: 31345153 DOI: 10.2174/1573403X15666190725121246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
63 Markovic S, Fages A, Roussel T, Hadas R, Brandis A, Neeman M, Frydman L. Placental physiology monitored by hyperpolarized dynamic 13C magnetic resonance. Proc Natl Acad Sci U S A 2018;115:E2429-36. [PMID: 29444856 DOI: 10.1073/pnas.1715175115] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
64 Laiwalla AN, Kurth F, Leu K, Liou R, Pamplona J, Ooi YC, Salamon N, Ellingson BM, Gonzalez NR. Evaluation of Encephaloduroarteriosynangiosis Efficacy Using Probabilistic Independent Component Analysis Applied to Dynamic Susceptibility Contrast Perfusion MRI. AJNR Am J Neuroradiol 2017;38:507-14. [PMID: 28104642 DOI: 10.3174/ajnr.A5041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Smeraldo A, Netti PA, Torino E. New Strategies in the Design of Paramagnetic CAs. Contrast Media Mol Imaging 2020;2020:4327479. [PMID: 33071681 DOI: 10.1155/2020/4327479] [Reference Citation Analysis]
66 Parfenov VA, Petrov SV, Pereira FDAS, Levin AA, Koudan EV, Nezhurina EK, Karalkin PA, Vasiliev MM, Petrov OF, Komlev VS, Khesuani YD, Mironov VA. Scaffold-free, Label-free, and Nozzle-free Magnetic Levitational Bioassembler for Rapid Formative Biofabrication of 3D Tissues and Organs. Int J Bioprint 2020;6:304. [PMID: 33088991 DOI: 10.18063/ijb.v6i3.304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
67 Weems AC, Szafron JM, Easley AD, Herting S, Smolen J, Maitland DJ. Shape memory polymers with enhanced visibility for magnetic resonance- and X-ray imaging modalities. Acta Biomater 2017;54:45-57. [PMID: 28259837 DOI: 10.1016/j.actbio.2017.02.045] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
68 Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2017;18:103-12. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
69 Tedeschi E, Cocozza S, Borrelli P, Ugga L, Morra VB, Palma G. Longitudinal Assessment of Dentate Nuclei Relaxometry during Massive Gadobutrol Exposure. Magn Reson Med Sci 2018;17:100-4. [PMID: 28367903 DOI: 10.2463/mrms.cr.2016-0137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
70 Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 2016;29:365-76. [PMID: 27053146 DOI: 10.1007/s10534-016-9931-7] [Cited by in Crossref: 336] [Cited by in F6Publishing: 265] [Article Influence: 56.0] [Reference Citation Analysis]
71 Beh CY, Prajnamitra RP, Chen LL, Hsieh PC. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021;26:5052. [PMID: 34443638 DOI: 10.3390/molecules26165052] [Reference Citation Analysis]
72 Du W, Zhou L, Zhang Q, Liu X, Wei X, Li Y. Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules 2021;26:7340. [PMID: 34885919 DOI: 10.3390/molecules26237340] [Reference Citation Analysis]
73 Le Goff S, Barrat JA, Chauvaud L, Paulet YM, Gueguen B, Ben Salem D. Compound-specific recording of gadolinium pollution in coastal waters by great scallops. Sci Rep 2019;9:8015. [PMID: 31142781 DOI: 10.1038/s41598-019-44539-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
74 Vangijzegem T, Stanicki D, Panepinto A, Socoliuc V, Vekas L, Muller RN, Laurent S. Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI). Nanomaterials (Basel) 2020;10:E757. [PMID: 32326593 DOI: 10.3390/nano10040757] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
75 Lyapustina T, Goldfine C, Rhyee S, Babu KM, Griswold MK. Evaluating the Patient with Reported Gadolinium-Associated Illness. J Med Toxicol 2019;15:36-44. [PMID: 30499040 DOI: 10.1007/s13181-018-0689-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
76 Li C, Yin J. Radiomics Nomogram Based on Radiomics Score from Multiregional Diffusion-Weighted MRI and Clinical Factors for Evaluating HER-2 2+ Status of Breast Cancer. Diagnostics (Basel) 2021;11:1491. [PMID: 34441425 DOI: 10.3390/diagnostics11081491] [Reference Citation Analysis]
77 Kanda T, Nakai Y, Aoki S, Oba H, Toyoda K, Kitajima K, Furui S. Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 2016;34:258-66. [PMID: 26932404 DOI: 10.1007/s11604-016-0532-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
78 Miranda VM. Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates. Reviews in Inorganic Chemistry 2021;0:000010151520200030. [DOI: 10.1515/revic-2020-0030] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater 2021;33:e1906539. [PMID: 32495404 DOI: 10.1002/adma.201906539] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
80 Müller A, Jurcoane A, Mädler B, Ditter P, Schild H, Hattingen E. Brain relaxometry after macrocyclic Gd-based contrast agent. Clin Neuroradiol 2017;27:459-68. [PMID: 28741075 DOI: 10.1007/s00062-017-0608-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
81 Choi JW, Moon WJ. Gadolinium Deposition in the Brain: Current Updates.Korean J Radiol. 2019;20:134-147. [PMID: 30627029 DOI: 10.3348/kjr.2018.0356] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 13.8] [Reference Citation Analysis]
82 Greiser J, Weigand W, Freesmeyer M. Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals (Basel) 2019;12:E137. [PMID: 31527492 DOI: 10.3390/ph12030137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Werner P, Taupitz M, Schröder L, Schuenke P. An NMR relaxometry approach for quantitative investigation of the transchelation of gadolinium ions from GBCAs to a competing macromolecular chelator. Sci Rep 2021;11:21731. [PMID: 34741037 DOI: 10.1038/s41598-021-00974-4] [Reference Citation Analysis]
84 Koudrina A, DeRosa MC. Advances in Medical Imaging: Aptamer- and Peptide-Targeted MRI and CT Contrast Agents. ACS Omega 2020;5:22691-701. [PMID: 32954116 DOI: 10.1021/acsomega.0c02650] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
85 Gaeta M, Cavallaro M, Vinci SL, Mormina E, Blandino A, Marino MA, Granata F, Tessitore A, Galletta K, D'Angelo T, Visalli C. Magnetism of materials: theory and practice in magnetic resonance imaging. Insights Imaging 2021;12:179. [PMID: 34862955 DOI: 10.1186/s13244-021-01125-z] [Reference Citation Analysis]
86 Chaosuwannakit N, Makarawate P. Diagnostic accuracy of low-dose dual-source cardiac computed tomography as compared to surgery in univentricular heart patients. J Cardiothorac Surg 2018;13:39. [PMID: 29769130 DOI: 10.1186/s13019-018-0729-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Danieli L, Riccitelli GC, Distefano D, Prodi E, Ventura E, Cianfoni A, Kaelin-Lang A, Reinert M, Pravatà E. Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI Techniques. AJNR Am J Neuroradiol 2019;40:1140-8. [PMID: 31221635 DOI: 10.3174/ajnr.A6096] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
88 Vajda M, Dědková J, Stříteská M, Jandura J, Ryška P. Enhancement of subarachnoid space during magnetic resonance imaging of endolymphatic hydrops: a case report. J Int Med Res 2021;49:3000605211029788. [PMID: 34250824 DOI: 10.1177/03000605211029788] [Reference Citation Analysis]
89 Pinter NK, Klein JP, Mechtler LL. Potential Safety Issues Related to the Use of Gadolinium-based Contrast Agents. Continuum (Minneap Minn) 2016;22:1678-84. [PMID: 27740994 DOI: 10.1212/CON.0000000000000378] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
90 Sundaram KM, Zhang Y, Mitra AK, Kouadio JK, Gwin K, Kossiakoff AA, Roman BB, Lengyel E, Piccirilli JA. Prolactin Receptor-Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity. Cancer Res 2017;77:1684-96. [PMID: 28202518 DOI: 10.1158/0008-5472.CAN-16-1454] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
91 Rovira A, Auger C, Huerga E, Corral JF, Mitjana R, Sastre-Garriga J, Tintoré M, Montalban X. Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis. AJNR Am J Neuroradiol 2017;38:1486-93. [PMID: 28619842 DOI: 10.3174/ajnr.A5253] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
92 Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol 2018;39:994-1000. [PMID: 29301779 DOI: 10.3174/ajnr.A5504] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
93 Traboulsee A, Li D. Addressing Concerns Regarding the Use of Gadolinium in a Standardized MRI Protocol for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016;37:E82-3. [PMID: 27585702 DOI: 10.3174/ajnr.A4943] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
94 Sakol N, Egawa A, Fujiwara T. Gadolinium Complexes as Contrast Agent for Cellular NMR Spectroscopy. Int J Mol Sci 2020;21:E4042. [PMID: 32516957 DOI: 10.3390/ijms21114042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
95 Li Y, Han Z, Roelle S, DeSanto A, Sabatelle R, Schur R, Lu ZR. Synthesis and Assessment of Peptide Gd-DOTA Conjugates Targeting Extradomain B Fibronectin for Magnetic Resonance Molecular Imaging of Prostate Cancer. Mol Pharm 2017;14:3906-15. [PMID: 28976766 DOI: 10.1021/acs.molpharmaceut.7b00619] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
96 Sun H, Xin J, Zhou J, Lu Z, Guo Q. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET. Mol Imaging Biol 2018;20:473-81. [PMID: 29063304 DOI: 10.1007/s11307-017-1136-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]