BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019;14:93-126. [PMID: 30451076 DOI: 10.2217/nnm-2018-0120] [Cited by in Crossref: 143] [Cited by in F6Publishing: 100] [Article Influence: 35.8] [Reference Citation Analysis]
Number Citing Articles
1 Hertig JB, Shah VP, Flühmann B, Mühlebach S, Stemer G, Surugue J, Moss R, Di Francesco T. Tackling the challenges of nanomedicines: are we ready? Am J Health Syst Pharm 2021;78:1047-56. [PMID: 33599767 DOI: 10.1093/ajhp/zxab048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. Polymer-Plastics Technology and Materials. [DOI: 10.1080/25740881.2021.1939715] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020;31:2060-71. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
4 Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020;28:468-86. [PMID: 31984810 DOI: 10.1080/1061186X.2020.1722137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. Journal of Drug Delivery Science and Technology 2020;60:102018. [DOI: 10.1016/j.jddst.2020.102018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
6 Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews 2022;9:011317. [DOI: 10.1063/5.0047672] [Reference Citation Analysis]
7 Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021;16:6593-644. [PMID: 34611400 DOI: 10.2147/IJN.S323831] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Romero EL, Morilla MJ. Preclinical autophagy modulatory nanomedicines: big challenges, slow advances. Expert Opin Drug Deliv 2021;:1-19. [PMID: 34030559 DOI: 10.1080/17425247.2021.1933428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Farjadian F, Behzad-Behbahani A, Mohammadi-Samani S, Ghasemi S. In vitro DNA plasmid condensation and transfection through pH-responsive nanohydrogel. Prog Biomater 2022. [PMID: 35532846 DOI: 10.1007/s40204-022-00187-6] [Reference Citation Analysis]
10 Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021;13:3075. [PMID: 34203051 DOI: 10.3390/cancers13123075] [Reference Citation Analysis]
11 Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021;335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020;25:E2193. [PMID: 32397080 DOI: 10.3390/molecules25092193] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 31.5] [Reference Citation Analysis]
13 Fan X, Luo Z, Ye E, You M, Liu M, Yun Y, Loh XJ, Wu YL, Li Z. AuNPs Decorated PLA Stereocomplex Micelles for Synergetic Photothermal and Chemotherapy. Macromol Biosci 2021;21:e2100062. [PMID: 33871168 DOI: 10.1002/mabi.202100062] [Reference Citation Analysis]
14 Haghighi AH, Khorasani MT, Faghih Z, Farjadian F. Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 2020;6:e03677. [PMID: 32280795 DOI: 10.1016/j.heliyon.2020.e03677] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Arta A, Larsen JB, Eriksen AZ, Kempen PJ, Larsen M, Andresen TL, Urquhart AJ. Cell targeting strategy affects the intracellular trafficking of liposomes altering loaded doxorubicin release kinetics and efficacy in endothelial cells. Int J Pharm 2020;588:119715. [PMID: 32750439 DOI: 10.1016/j.ijpharm.2020.119715] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020;15:1617-36. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021;294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
18 Farjadian F, Akbarizadeh AR, Tayebi L. Synthesis of novel reducing agent for formation of metronidazole-capped silver nanoparticle and evaluating antibacterial efficiency in gram-positive and gram-negative bacteria. Heliyon 2020;6:e04747. [PMID: 32913906 DOI: 10.1016/j.heliyon.2020.e04747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Rolley N, Bonnin M, Lefebvre G, Verron S, Bargiel S, Robert L, Riou J, Simonsson C, Bizien T, Gimel JC, Benoit JP, Brotons G, Calvignac B. Galenic Lab-on-a-Chip concept for lipid nanocapsules production. Nanoscale 2021;13:11899-912. [PMID: 34190298 DOI: 10.1039/d1nr00879j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Yadav K, Singh MR, Rai VK, Srivastava N, Prasad Yadav N. Commercial aspects and market potential of novel delivery systems for bioactives and biological agents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Elsevier; 2020. pp. 595-620. [DOI: 10.1016/b978-0-12-819666-3.00020-1] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel). 2020;12. [PMID: 33182737 DOI: 10.3390/cancers12113323] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
22 Farjadian F, Abbaspour S, Sadatlu MAA, Mirkiani S, Ghasemi A, Hoseini‐ghahfarokhi M, Mozaffari N, Karimi M, Hamblin MR. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020;5:10200-19. [DOI: 10.1002/slct.202002501] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
23 Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. Adv Mater 2021;33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 14.0] [Reference Citation Analysis]
24 . The role of nanoparticles for biomedical application. Asian Biomedicine 2019;13:121-2. [DOI: 10.1515/abm-2019-0050] [Reference Citation Analysis]
25 Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021;169:105604. [PMID: 33845125 DOI: 10.1016/j.phrs.2021.105604] [Reference Citation Analysis]
26 Cascallar M, Alijas S, Pensado-lópez A, Vázquez-ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers 2022;14:2238. [DOI: 10.3390/cancers14092238] [Reference Citation Analysis]
27 Carvalho SG, Araujo VHS, Dos Santos AM, Duarte JL, Silvestre ALP, Fonseca-Santos B, Villanova JCO, Gremião MPD, Chorilli M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 2020;580:119214. [PMID: 32165220 DOI: 10.1016/j.ijpharm.2020.119214] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
28 Farjadian F, Rezaeifard S, Naeimi M, Ghasemi S, Mohammadi-Samani S, Welland ME, Tayebi L. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Int J Nanomedicine 2019;14:6901-15. [PMID: 31564860 DOI: 10.2147/IJN.S214467] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
29 Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. Nanomaterials (Basel) 2019;9:E1485. [PMID: 31635330 DOI: 10.3390/nano9101485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
30 Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. Journal of Drug Delivery Science and Technology 2020;56:101509. [DOI: 10.1016/j.jddst.2020.101509] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
31 Bough A. Welcome to the 16th volume of Nanomedicine. Nanomedicine (Lond) 2021;16:1-4. [PMID: 33443459 DOI: 10.2217/nnm-2020-0436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020;49:5008-57. [PMID: 32538379 DOI: 10.1039/c8cs01021h] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
33 Endres S, Karaev E, Hanio S, Schlauersbach J, Kraft C, Rasmussen T, Luxenhofer R, Böttcher B, Meinel L, Pöppler AC. Concentration and composition dependent aggregation of Pluronic- and Poly-(2-oxazolin)-Efavirenz formulations in biorelevant media. J Colloid Interface Sci 2022;606:1179-92. [PMID: 34487937 DOI: 10.1016/j.jcis.2021.08.040] [Reference Citation Analysis]
34 Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2020;20:2762-76. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Yu Y, Wang Z, Wang R, Jin J, Zhu YZ. Short-Term Oral Administration of Mesoporous Silica Nanoparticles Potentially Induced Colon Inflammation in Rats Through Alteration of Gut Microbiota. Int J Nanomedicine 2021;16:881-93. [PMID: 33574668 DOI: 10.2147/IJN.S295575] [Reference Citation Analysis]
36 Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology 2020;60:101961. [DOI: 10.1016/j.jddst.2020.101961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Da Silva FLO, Marques MBDF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opinion on Drug Discovery 2020;15:853-64. [DOI: 10.1080/17460441.2020.1750591] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
38 Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020;8:558375. [PMID: 33365304 DOI: 10.3389/fbioe.2020.558375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv 2021;3:10-23. [DOI: 10.1039/d0na00454e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
40 Akbarian M, Gholinejad M, Mohammadi-samani S, Farjadian F. Theranostic mesoporous silica nanoparticles made of multi-nuclear gold or carbon quantum dots particles serving as pH responsive drug delivery system. Microporous and Mesoporous Materials 2022;329:111512. [DOI: 10.1016/j.micromeso.2021.111512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wu B, Zhang LJ, Zhang CJ, Deng K, Ao YW, Mei H, Zhou W, Wang CX, Yu H, Huang SW. Effect of Poly(ethylene glycol) (PEG) Surface Density on the Fate and Antitumor Efficacy of Redox-Sensitive Hybrid Nanoparticles. ACS Biomater Sci Eng 2020;6:3975-83. [PMID: 33463329 DOI: 10.1021/acsbiomaterials.0c00516] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. J Biomater Sci Polym Ed 2021;:1-28. [PMID: 34078252 DOI: 10.1080/09205063.2021.1938859] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021;175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
44 Koksharov YA, Gubin SP, Taranov IV, Khomutov GB, Gulyaev YV. Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. J Commun Technol Electron 2022;67:101-16. [DOI: 10.1134/s1064226922020073] [Reference Citation Analysis]
45 Saka R, Chella N. Nanocarriers as Tools for Delivery of Nature Derived Compounds and Extracts with Therapeutic Activity. In: Saneja A, Panda AK, Lichtfouse E, editors. Sustainable Agriculture Reviews 44. Cham: Springer International Publishing; 2020. pp. 73-114. [DOI: 10.1007/978-3-030-41842-7_3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder SS, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021. [PMID: 33578402 DOI: 10.1088/1748-605X/abe5fa] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
47 Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2021;16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
48 Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019;314:162-76. [DOI: 10.1016/j.jconrel.2019.10.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
49 Gupta R, Chen Y, Xie H. In vitro dissolution considerations associated with nano drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1732. [PMID: 34132050 DOI: 10.1002/wnan.1732] [Reference Citation Analysis]
50 Ferreira-Silva M, Faria-Silva C, Baptista PV, Fernandes E, Fernandes AR, Corvo ML. Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury. Drug Deliv Transl Res 2021;11:397-410. [PMID: 33660214 DOI: 10.1007/s13346-021-00915-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, Kalia K, Tekade RK. Nanomedicines accessible in the market for clinical interventions. Journal of Controlled Release 2021;330:372-97. [DOI: 10.1016/j.jconrel.2020.12.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
52 Guerrini G, Vivi A, Gioria S, Ponti J, Magrì D, Hoeveler A, Medaglini D, Calzolai L. Physicochemical Characterization Cascade of Nanoadjuvant-Antigen Systems for Improving Vaccines. Vaccines (Basel) 2021;9:544. [PMID: 34064212 DOI: 10.3390/vaccines9060544] [Reference Citation Analysis]
53 Entezar-almahdi E, Heidari R, Ghasemi S, Mohammadi-samani S, Farjadian F. Integrin receptor mediated pH-responsive nano-hydrogel based on histidine-modified poly(aminoethyl methacrylamide) as targeted cisplatin delivery system. Journal of Drug Delivery Science and Technology 2021;62:102402. [DOI: 10.1016/j.jddst.2021.102402] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
54 Zhang X, Yang J, Cheng B, Zhao S, Li Y, Kang H, Chen S. Magnetic nanocarriers as a therapeutic drug delivery strategy for promoting pain-related motor functions in a rat model of cartilage transplantation. J Mater Sci Mater Med 2021;32:37. [PMID: 33787997 DOI: 10.1007/s10856-021-06508-8] [Reference Citation Analysis]
55 Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discov Today 2021;26:902-15. [PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017] [Reference Citation Analysis]
56 Shahiwala A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther Deliv 2022. [PMID: 35341330 DOI: 10.4155/tde-2022-0009] [Reference Citation Analysis]
57 Akbarian M, Tayebi L, Mohammadi-samani S, Farjadian F. Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation. J Phys Chem B 2020. [DOI: 10.1021/acs.jpcb.9b10980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Li M, Wang Y, Jiang S, Gao Y, Zhang W, Hu S, Cheng X, Zhang C, Sun P, Ke W, Wang G, Song Z, Zhang Y, Zheng QC. Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Nanomedicine (Lond) 2020;15:145-61. [PMID: 31782335 DOI: 10.2217/nnm-2018-0455] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
59 Mishra PK, Sharma J. Navigating the ethics of nanomedicine: are we lost in translation? Nanomedicine (Lond) 2021;16:1075-80. [PMID: 33900107 DOI: 10.2217/nnm-2021-0054] [Reference Citation Analysis]
60 Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. J Pharm Innov 2020;:1-17. [PMID: 32983280 DOI: 10.1007/s12247-020-09495-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Achawi S, Pourchez J, Feneon B, Forest V. Graphene-Based Materials In Vitro Toxicity and Their Structure-Activity Relationships: A Systematic Literature Review. Chem Res Toxicol 2021;34:2003-18. [PMID: 34424669 DOI: 10.1021/acs.chemrestox.1c00243] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020;15:1405-19. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
63 Grasselli M, Alonso SDV. Polymer-based nanoparticles: fabrication to applications—the many faces of DC8,9PC and albumin. Biophys Rev 2021;13:925-30. [DOI: 10.1007/s12551-021-00872-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Pippa N, Forys A, Katifelis H, Chrysostomou V, Trzebicka B, Gazouli M, Demetzos C, Pispas S. Design and development of DSPC:DAP:PDMAEMA-b-PLMA nanostructures: from the adumbration of their morphological characteristics to in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;632:127768. [DOI: 10.1016/j.colsurfa.2021.127768] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Mei D, Gong L, Zou Y, Yang D, Liu H, Liang Y, Sun N, Zhao L, Zhang Q, Lin Z. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. Journal of Controlled Release 2020;324:341-53. [DOI: 10.1016/j.jconrel.2020.05.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
66 Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022;7:8. [PMID: 35467307 DOI: 10.1186/s41181-022-00161-4] [Reference Citation Analysis]
67 Rajora AK, Ravishankar D, Zhang H, Rosenholm JM. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics 2020;12:592. [DOI: 10.3390/pharmaceutics12060592] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
68 Talarska P, Boruczkowski M, Żurawski J. Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials (Basel) 2021;11:2454. [PMID: 34578770 DOI: 10.3390/nano11092454] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021;7:106. [PMID: 33540749 DOI: 10.3390/jof7020106] [Reference Citation Analysis]
70 Lin C, Gao H, Ouyang L. Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. J Control Release 2021;337:494-504. [PMID: 34358590 DOI: 10.1016/j.jconrel.2021.08.002] [Reference Citation Analysis]
71 Abdellatif AAH, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews 2021;10:1941-77. [DOI: 10.1515/ntrev-2021-0115] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Antoniou AI, Giofrè S, Seneci P, Passarella D, Pellegrino S. Stimulus-responsive liposomes for biomedical applications. Drug Discov Today 2021;26:1794-824. [PMID: 34058372 DOI: 10.1016/j.drudis.2021.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 McGoron AJ. Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjug Chem 2020;31:436-47. [PMID: 31922742 DOI: 10.1021/acs.bioconjchem.9b00818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. Nanomaterials (Basel) 2020;10:E2177. [PMID: 33142878 DOI: 10.3390/nano10112177] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
75 Kelly S, Byrne MH, Quinn SJ, Simpson JC. Multiparametric nanoparticle-induced toxicity readouts with single cell resolution in HepG2 multicellular tumour spheroids. Nanoscale 2021;13:17615-28. [PMID: 34661590 DOI: 10.1039/d1nr04460e] [Reference Citation Analysis]
76 Shyma Mary Y, Sheena Mary Y, Ullah Z. Computational Study of Sorbic Acid Drug Adsorption onto Coronene/Fullerene/Fullerene-Like X12Y12 (X = Al, B and Y = N, P) Nanocages: DFT and Molecular Docking Investigations. J Clust Sci. [DOI: 10.1007/s10876-021-02106-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Jain S, Dongave SM, Date T, Kushwah V, Mahajan RR, Pujara N, Kumeria T, Popat A. Succinylated β-Lactoglobuline-Functionalized Multiwalled Carbon Nanotubes with Improved Colloidal Stability and Biocompatibility. ACS Biomater Sci Eng 2019;5:3361-72. [DOI: 10.1021/acsbiomaterials.9b00268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
78 Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. European Polymer Journal 2021;158:110683. [DOI: 10.1016/j.eurpolymj.2021.110683] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
79 Ahmed T, Liu FF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Reference Citation Analysis]
80 Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019;198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 14.3] [Reference Citation Analysis]
81 Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021;162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Kerry RG, Mohapatra P, Jena AB, Panigrahi B, Pradhan KC, Khatua BR, Mahari S, Pal S, Perikala V, Kisan B, Lugos MD, Mondru AK, Sahoo SK, Mandal D, Majhi S, Patra JK. Biosynthesis of Rutin Trihydrate Loaded Silica Nanoparticles and Investigation of Its Antioxidant, Antidiabetic and Cytotoxic Potentials. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02269-1] [Reference Citation Analysis]
83 Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020;12:E665. [PMID: 32679772 DOI: 10.3390/pharmaceutics12070665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
84 Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022;23:1685. [PMID: 35163607 DOI: 10.3390/ijms23031685] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
85 Zarkesh K, Entezar-Almahdi E, Ghasemiyeh P, Akbarian M, Bahmani M, Roudaki S, Fazlinejad R, Mohammadi-Samani S, Firouzabadi N, Hosseini M, Farjadian F. Drug-based therapeutic strategies for COVID-19-infected patients and their challenges. Future Microbiol 2021;16:1415-51. [PMID: 34812049 DOI: 10.2217/fmb-2021-0116] [Reference Citation Analysis]
86 Robinson RLM, Sarimveis H, Doganis P, Jia X, Kotzabasaki M, Gousiadou C, Harper SL, Wilkins T. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. Beilstein J Nanotechnol 2021;12:1297-325. [PMID: 34934606 DOI: 10.3762/bjnano.12.97] [Reference Citation Analysis]
87 Szabat-Iriaka B, Le Borgne M. Brain safety concerns of nanomedicines: The need for a specific regulatory framework. Drug Discov Today 2021;26:2502-7. [PMID: 34224902 DOI: 10.1016/j.drudis.2021.06.011] [Reference Citation Analysis]
88 Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Adv Mater 2020;32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
89 Giannakou C, Park MVDZ, Bosselaers IEM, de Jong WH, van der Laan JW, van Loveren H, Vandebriel RJ, Geertsma RE. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1633. [PMID: 32266791 DOI: 10.1002/wnan.1633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Garcia-Reyero N, Gordon J, Kleinstreuer NC, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2022;39:183–206. [PMID: 34874455 DOI: 10.14573/altex.2105041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Ahmadi S, Toropova AP, Toropov AA. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles. Nanotoxicology 2020;14:1118-26. [DOI: 10.1080/17435390.2020.1808252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
92 Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicology Mechanisms and Methods 2021;31:1-17. [DOI: 10.1080/15376516.2020.1828521] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
93 Farzanfar J, Farjadian F, Roointan A, Mohammadi-samani S, Tayebi L. Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021;29:54-61. [DOI: 10.1007/s13233-021-9007-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Martins JP, das Neves J, de la Fuente M, Celia C, Florindo H, Günday-Türeli N, Popat A, Santos JL, Sousa F, Schmid R, Wolfram J, Sarmento B, Santos HA. The solid progress of nanomedicine. Drug Deliv Transl Res 2020;10:726-9. [PMID: 32141035 DOI: 10.1007/s13346-020-00743-2] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 44.0] [Reference Citation Analysis]
95 Halwani AA. Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics 2022;14:106. [PMID: 35057002 DOI: 10.3390/pharmaceutics14010106] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
96 Lebreton V, Legeay S, Saulnier P, Lagarce F. Specificity of pharmacokinetic modeling of nanomedicines. Drug Discov Today 2021:S1359-6446(21)00201-4. [PMID: 33892140 DOI: 10.1016/j.drudis.2021.04.017] [Reference Citation Analysis]
97 Dri DA, Marianecci C, Carafa M, Gaucci E, Gramaglia D. Surfactants, Nanomedicines and Nanocarriers: A Critical Evaluation on Clinical Trials. Pharmaceutics 2021;13:381. [PMID: 33805639 DOI: 10.3390/pharmaceutics13030381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
98 Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
99 Korzuch J, Rak M, Balin K, Zubko M, Głowacka O, Dulski M, Musioł R, Madeja Z, Serda M. Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model. Sci Rep 2021;11:10565. [PMID: 34012024 DOI: 10.1038/s41598-021-89943-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Colombo E, Biocotino M, Frapporti G, Randazzo P, Christodoulou MS, Piccoli G, Polito L, Seneci P, Passarella D. Nanolipid-Trehalose Conjugates and Nano-Assemblies as Putative Autophagy Inducers. Pharmaceutics 2019;11:E422. [PMID: 31434235 DOI: 10.3390/pharmaceutics11080422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
101 Oehrl A, Schötz S, Haag R. Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid Polym Sci 2020;298:719-33. [DOI: 10.1007/s00396-020-04675-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
102 Marazioti A, Papadia K, Kannavou M, Spella M, Basta A, de Lastic AL, Rodi M, Mouzaki A, Samiotaki M, Panayotou G, Stathopoulos GT, Antimisiaris SG. Cellular Vesicles: New Insights in Engineering Methods, Interaction with Cells and Potential for Brain Targeting. J Pharmacol Exp Ther 2019;370:772-85. [PMID: 31061141 DOI: 10.1124/jpet.119.257097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
103 Sharma P, Jhawat V, Mathur P, Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med Oncol 2022;39:76. [PMID: 35195787 DOI: 10.1007/s12032-022-01677-0] [Reference Citation Analysis]
104 B Sánchez A, Calpena AC, Soriano JL, Gálvez P, Clares B. Anti-inflammatory nanomedicines: what does the future hold? Nanomedicine (Lond) 2020;15:1357-60. [PMID: 32515267 DOI: 10.2217/nnm-2020-0064] [Reference Citation Analysis]
105 Rosa AC, Bruni N, Meineri G, Corsi D, Cavi N, Gastaldi D, Dosio F. Strategies to expand the therapeutic potential of superoxide dismutase by exploiting delivery approaches. Int J Biol Macromol 2021;168:846-65. [PMID: 33242550 DOI: 10.1016/j.ijbiomac.2020.11.149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
106 Hafeez MN, Celia C, Petrikaite V. Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes 2021;9:1527. [DOI: 10.3390/pr9091527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
107 El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021;173:238-51. [PMID: 33774117 DOI: 10.1016/j.addr.2021.03.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
108 Tiwari N, Osorio-Blanco ER, Sonzogni A, Esporrín-Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2021. [PMID: 34487599 DOI: 10.1002/anie.202107960] [Reference Citation Analysis]
109 Tomalia DA, Nixon LS, Hedstrand DM. The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties. Biomolecules 2020;10:E642. [PMID: 32326311 DOI: 10.3390/biom10040642] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
110 Apolinário AC, Hirata AS, Anjos Miguel RD, Costa-Lotufo LV, Pessoa A, La Clair JJ, Fenical W, Lopes LB. Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine (Lond) 2020;15:2539-42. [PMID: 32945726 DOI: 10.2217/nnm-2020-0290] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
111 Fobian SF, Cheng Z, Ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics 2021;14:26. [PMID: 35056922 DOI: 10.3390/pharmaceutics14010026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
112 Al-Otaibi JS, Mary YS, Mary YS, Kaya S, Serdaroglu G. DFT computational study of trihalogenated aniline derivative's adsorption onto graphene/fullerene/fullerene-like nanocages, X12Y12 (X = Al, B, and Y = N, P). J Biomol Struct Dyn 2021;:1-14. [PMID: 33876711 DOI: 10.1080/07391102.2021.1914172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
113 Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral J. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release 2021;332:346-66. [DOI: 10.1016/j.jconrel.2021.03.003] [Reference Citation Analysis]
114 Firestein R, Marcinkiewicz C, Nie L, Chua HK, Velazquez Quesada I, Torelli M, Sternberg M, Gligorijevic B, Shenderova O, Schirhagl R, Feuerstein GZ. Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnol Sci Appl 2021;14:139-59. [PMID: 34522092 DOI: 10.2147/NSA.S321725] [Reference Citation Analysis]
115 Muthiah G, Jaiswal A. Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management? Advanced NanoBiomed Research 2022;2:2100074. [DOI: 10.1002/anbr.202100074] [Reference Citation Analysis]
116 Praveen TK, Gangadharappa HV, Abu Lila AS, Moin A, Mehmood K, Krishna KL, Hussain T, Alafanan A, Shakil S, Rizvi SMD. Inflammation targeted nanomedicines: patents and applications in cancer therapy. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.004] [Reference Citation Analysis]
117 Bouzo BL, Calvelo M, Martín-Pastor M, García-Fandiño R, de la Fuente M. In Vitro-In Silico Modeling Approach to Rationally Designed Simple and Versatile Drug Delivery Systems. J Phys Chem B 2020;124:5788-800. [PMID: 32525313 DOI: 10.1021/acs.jpcb.0c02731] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
118 Silva F, Cabral Campello MP, Paulo A. Radiolabeled Gold Nanoparticles for Imaging and Therapy of Cancer. Materials (Basel) 2020;14:E4. [PMID: 33375074 DOI: 10.3390/ma14010004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Ackun-Farmmer MA, Overby CT, Haws BE, Choe R, Benoit DSW. Biomaterials for Orthopaedic Diagnostics and Theranostics. Curr Opin Biomed Eng 2021;19:100308. [PMID: 34458652 DOI: 10.1016/j.cobme.2021.100308] [Reference Citation Analysis]
120 Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iran Polym J 2020;29:197-207. [DOI: 10.1007/s13726-020-00785-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
121 Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
122 Zhou S, Li J, Yu J, Yang L, Kuang X, Wang Z, Wang Y, Liu H, Lin G, He Z, Liu D, Wang Y. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm Sin B 2021;11:258-70. [PMID: 33532191 DOI: 10.1016/j.apsb.2020.08.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
123 Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int J Nanomedicine 2020;15:5445-58. [PMID: 32801699 DOI: 10.2147/IJN.S257700] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
124 Gangapurwala G, Vollrath A, De San Luis A, Schubert US. PLA/PLGA-Based Drug Delivery Systems Produced with Supercritical CO2-A Green Future for Particle Formulation? Pharmaceutics 2020;12:E1118. [PMID: 33233637 DOI: 10.3390/pharmaceutics12111118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
125 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Reference Citation Analysis]
126 Luo WC, O'Reilly Beringhs A, Kim R, Zhang W, Patel SM, Bogner RH, Lu X. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur J Pharm Biopharm 2021;169:256-67. [PMID: 34732383 DOI: 10.1016/j.ejpb.2021.10.014] [Reference Citation Analysis]
127 Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, Haeri A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020;113:42-62. [PMID: 32622055 DOI: 10.1016/j.actbio.2020.06.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
128 Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Reference Citation Analysis]
129 Tavares JL, Cavalcanti IDL, Santos Magalhães NS, Lira Nogueira MCDB. Nanotechnology and COVID-19: quo vadis? J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05452-0] [Reference Citation Analysis]
130 Shi Y, Zhu ML, Wu Q, Huang Y, Xu XL, Chen W. The Potential of Drug Delivery Nanosystems for Sepsis Treatment. J Inflamm Res 2021;14:7065-77. [PMID: 34984019 DOI: 10.2147/JIR.S339113] [Reference Citation Analysis]
131 Mutalik SP, Mullick P, Pandey A, Kulkarni SS, Mutalik S. Box-Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. J Sep Sci 2021;44:2917-31. [PMID: 34076952 DOI: 10.1002/jssc.202100152] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-fernández Á, Ceña V, Majoral J. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chem 2020;31:2060-71. [DOI: 10.1021/acs.bioconjchem.0c00395] [Reference Citation Analysis]
133 Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral J. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release 2021;332:346-66. [DOI: 10.1016/j.jconrel.2021.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
134 Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021;10:e2001378. [PMID: 33236524 DOI: 10.1002/adhm.202001378] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
135 Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
136 Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ 2022;821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
137 Zhang C, Yan L, Wang X, Zhu S, Chen C, Gu Z, Zhao Y. Progress, challenges, and future of nanomedicine. Nano Today 2020;35:101008. [DOI: 10.1016/j.nantod.2020.101008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
138 Li X, Ai S, Lu X, Liu S, Guan W. Nanotechnology-based strategies for gastric cancer imaging and treatment. RSC Adv 2021;11:35392-407. [PMID: 35493171 DOI: 10.1039/d1ra01947c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. Nano Today 2020;34:100914. [PMID: 32788923 DOI: 10.1016/j.nantod.2020.100914] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
140 Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020;15:9469-96. [PMID: 33281443 DOI: 10.2147/IJN.S265876] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
141 Ramos Campos EV, Proença PLF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020;17:1615-30. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
142 Cassani L, Marcovich NE, Gomez-Zavaglia A. Seaweed bioactive compounds: Promising and safe inputs for the green synthesis of metal nanoparticles in the food industry. Crit Rev Food Sci Nutr 2021;:1-24. [PMID: 34407716 DOI: 10.1080/10408398.2021.1965537] [Reference Citation Analysis]
143 Uhlemann J, Diedam H, Hoheisel W, Schikarski T, Peukert W. Modeling and Simulation of Process Technology for Nanoparticulate Drug Formulations-A Particle Technology Perspective. Pharmaceutics 2020;13:E22. [PMID: 33374375 DOI: 10.3390/pharmaceutics13010022] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
144 Moshawih S, S.m.n. Mydin RB, Kalakotla S, Jarrar QB. Potential application of resveratrol in nanocarriers against cancer: Overview and future trends. Journal of Drug Delivery Science and Technology 2019;53:101187. [DOI: 10.1016/j.jddst.2019.101187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
145 Bosetti R, Jones SL. Cost-effectiveness of nanomedicine: estimating the real size of nano-costs. Nanomedicine (Lond) 2019;14:1367-70. [PMID: 31169449 DOI: 10.2217/nnm-2019-0130] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
146 Antimisiaris SG, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021;174:53-86. [PMID: 33539852 DOI: 10.1016/j.addr.2021.01.019] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 50.0] [Reference Citation Analysis]
147 Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021;13:2137. [PMID: 34959418 DOI: 10.3390/pharmaceutics13122137] [Reference Citation Analysis]
148 Mohammadi H, Heidari R, Niknezhad SV, Jamshidzadeh A, Farjadian F. In vitro and in vivo Evaluation of Succinic Acid-Substituted Mesoporous Silica for Ammonia Adsorption: Potential Application in the Management of Hepatic Encephalopathy. Int J Nanomedicine 2020;15:10085-98. [PMID: 33363368 DOI: 10.2147/IJN.S271883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
149 de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021;143:112137. [PMID: 34507118 DOI: 10.1016/j.biopha.2021.112137] [Reference Citation Analysis]
150 Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021;19:106. [PMID: 33858436 DOI: 10.1186/s12951-021-00853-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
151 Simón-Vázquez R, Peleteiro M, González-Fernández Á. Polymeric nanostructure vaccines: applications and challenges. Expert Opin Drug Deliv 2020;17:1007-23. [PMID: 32476491 DOI: 10.1080/17425247.2020.1776259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
152 Viana IMO, Grenier P, Defrêne J, Barabé F, Lima EM, Bertrand N. Role of the complement cascade in the biological fate of liposomes in rodents. Nanoscale 2020;12:18875-84. [PMID: 32901649 DOI: 10.1039/d0nr04100a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]