BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pascolo L, Gianoncelli A, Kaulich B, Rizzardi C, Schneider M, Bottin C, Polentarutti M, Kiskinova M, Longoni A, Melato M. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 2011;8:7. [PMID: 21299853 DOI: 10.1186/1743-8977-8-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Pascolo L, Zabucchi G, Gianoncelli A, Kourousias G, Trevisan E, Pascotto E, Casarsa C, Ryan C, Lucattelli M, Lungarella G, Cavarra E, Bartalesi B, Zweyer M, Cammisuli F, Melato M, Borelli V. Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice. Toxicology Letters 2016;241:111-20. [DOI: 10.1016/j.toxlet.2015.11.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
2 Luchinat E, Gianoncelli A, Mello T, Galli A, Banci L. Combining in-cell NMR and X-ray fluorescence microscopy to reveal the intracellular maturation states of human superoxide dismutase 1. Chem Commun 2015;51:584-7. [DOI: 10.1039/c4cc08129c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
3 Borelli V, Trevisan E, Vita F, Bottin C, Melato M, Rizzardi C, Zabucchi G. Peroxidase-Like Activity of Ferruginous Bodies Isolated by Exploiting their Magnetic Property. Journal of Toxicology and Environmental Health, Part A 2012;75:603-23. [DOI: 10.1080/15287394.2012.688478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
4 Gualtieri AF, Andreozzi GB, Tomatis M, Turci F. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radical Biology and Medicine 2019;133:21-37. [DOI: 10.1016/j.freeradbiomed.2018.07.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
5 Pascolo L, Gianoncelli A, Schneider G, Salomé M, Schneider M, Calligaro C, Kiskinova M, Melato M, Rizzardi C. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci Rep 2013;3:1123. [PMID: 23350030 DOI: 10.1038/srep01123] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 5.4] [Reference Citation Analysis]
6 Korchevskiy A, Rasmuson JO, Rasmuson EJ. Empirical model of mesothelioma potency factors for different mineral fibers based on their chemical composition and dimensionality. Inhal Toxicol 2019;31:180-91. [PMID: 31328588 DOI: 10.1080/08958378.2019.1640320] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
7 Bardelli F, Veronesi G, Capella S, Bellis D, Charlet L, Cedola A, Belluso E. New insights on the biomineralisation process developing in human lungs around inhaled asbestos fibres. Sci Rep 2017;7:44862. [PMID: 28332562 DOI: 10.1038/srep44862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
8 Pascolo L, Gianoncelli A, Rizzardi C, de Jonge M, Howard D, Paterson D, Cammisuli F, Salomé M, De Paoli P, Melato M, Canzonieri V. Focused X-Ray Histological Analyses to Reveal Asbestos Fibers and Bodies in Lungs and Pleura of Asbestos-Exposed Subjects. Microsc Microanal 2016;22:1062-71. [DOI: 10.1017/s1431927616011685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
9 Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. Rapid Commun Mass Spectrom 2020;34:e8906. [PMID: 32700418 DOI: 10.1002/rcm.8906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gianoncelli A, Kourousias G, Stolfa A, Kaulich B. Recent developments at the TwinMic beamline at ELETTRA: an 8 SDD detector setup for low energy X-ray Fluorescence. J Phys : Conf Ser 2013;425:182001. [DOI: 10.1088/1742-6596/425/18/182001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
11 Gianoncelli A, Kourousias G, Cammisuli F, Cassese D, Rizzardi C, Radillo O, Lazzarino M, Pascolo L. Combined use of AFM and soft X-ray microscopy to reveal fibres' internalization in mesothelial cells. Analyst 2017;142:1982-92. [PMID: 28509933 DOI: 10.1039/c6an02661c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
12 Pugnaloni A, Lucarini G, Rubini C, Smorlesi A, Tomasetti M, Strafella E, Armeni T, Gualtieri AF. Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro. Acta Histochemica 2015;117:29-39. [DOI: 10.1016/j.acthis.2014.10.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
13 Andreozzi GB, Pacella A, Corazzari I, Tomatis M, Turci F. Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Sci Rep 2017;7:14696. [PMID: 29089634 DOI: 10.1038/s41598-017-14480-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
14 Gianoncelli A, Kourousias G, Merolle L, Altissimo M, Bianco A. Current status of the TwinMic beamline at Elettra: a soft X-ray transmission and emission microscopy station. J Synchrotron Rad 2016;23:1526-37. [DOI: 10.1107/s1600577516014405] [Cited by in Crossref: 75] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
15 Gianoncelli A, Rizzardi C, Salomon D, Canzonieri V, Pascolo L. Nano-imaging of environmental dust in human lung tissue by soft and hard X-ray fluorescence microscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2018;147:71-8. [DOI: 10.1016/j.sab.2018.05.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
16 Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 2012;43:565-82. [PMID: 22244153 DOI: 10.1016/j.micron.2011.12.004] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
17 Gianoncelli A, Bufon J, Ahangarianabhari M, Altissimo M, Bellutti P, Bertuccio G, Borghes R, Carrato S, Cautero G, Fabiani S, Giacomini G, Giuressi D, Kourousias G, Menk RH, Picciotto A, Piemonte C, Rachevski A, Rashevskaya I, Stolfa A, Vacchi A, Zampa G, Zampa N, Zorzi N. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2016;816:113-8. [DOI: 10.1016/j.nima.2016.01.076] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
18 Gandolfi NB, Gualtieri AF, Pollastri S, Tibaldi E, Belpoggi F. Assessment of asbestos body formation by high resolution FEG–SEM after exposure of Sprague–Dawley rats to chrysotile, crocidolite, or erionite. Journal of Hazardous Materials 2016;306:95-104. [DOI: 10.1016/j.jhazmat.2015.11.050] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
19 Pacella A, Fantauzzi M, Turci F, Cremisini C, Montereali MR, Nardi E, Atzei D, Rossi A, Andreozzi GB. Surface alteration mechanism and topochemistry of iron in tremolite asbestos: A step toward understanding the potential hazard of amphibole asbestos. Chemical Geology 2015;405:28-38. [DOI: 10.1016/j.chemgeo.2015.03.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 2.1] [Reference Citation Analysis]
20 Billè F, Kourousias G, Luchinat E, Kiskinova M, Gianoncelli A. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method. Spectrochimica Acta Part B: Atomic Spectroscopy 2016;122:23-30. [DOI: 10.1016/j.sab.2016.05.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
21 Roggli VL. Asbestos Bodies and Non-asbestos Ferruginous Bodies. In: Oury TD, Sporn TA, Roggli VL, editors. Pathology of Asbestos-Associated Diseases. Berlin: Springer Berlin Heidelberg; 2014. pp. 25-51. [DOI: 10.1007/978-3-642-41193-9_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
22 Pascotto E, Gianoncelli A, Calligaro C, Marcuzzo T, Melato M, Rizzardi C, Pascolo L. Ferruginous bodies resolved by synchrotron XRF in a dog with peritoneal malignant mesothelioma. Environ Sci Pollut Res Int 2018;25:35707-14. [PMID: 30357666 DOI: 10.1007/s11356-018-3521-x] [Reference Citation Analysis]
23 Bardelli F, Brun F, De Panfilis S, Cloetens P, Capella S, Belluso E, Bellis D, Di Napoli A, Cedola A. Chemo-physical properties of asbestos bodies in human lung tissues studied at the nano-scale by non-invasive, label free x-ray imaging and spectroscopic techniques. Toxicol Lett 2021;348:18-27. [PMID: 34023437 DOI: 10.1016/j.toxlet.2021.05.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Bufon J, Gianoncelli A, Ahangarianabhari M, Altissimo M, Bellutti P, Bertuccio G, Borghes R, Carrato S, Cautero G, Cicuttin A, Crespo ML, Fabiani S, Gandola M, Giacomini G, Giuressi D, Kourousias G, Menk RH, Picciotto A, Piemonte C, Rachevski A, Rashevskaya I, Schillani S, Stolfa A, Vacchi A, Zampa G, Zampa N, Zorzi N. Towards a multi-element silicon drift detector system for fluorescence spectroscopy in the soft X-ray regime: A multi-element silicon drift detector system for low-energy XRF. X-Ray Spectrom 2017;46:313-8. [DOI: 10.1002/xrs.2766] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
25 Bufon J, Schillani S, Altissimo M, Bellutti P, Bertuccio G, Billè F, Borghes R, Borghi G, Cautero G, Cirrincione D, Fabiani S, Ficorella F, Gandola M, Gianoncelli A, Giuressi D, Kourousias G, Mele F, Menk R, Picciotto A, Rachevski A, Rashevskaya I, Sammartini M, Stolfa A, Zampa G, Zampa N, Zorzi N, Vacchi A. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy. J Inst 2018;13:C03032-C03032. [DOI: 10.1088/1748-0221/13/03/c03032] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
26 Pascolo L, Borelli V, Canzonieri V, Gianoncelli A, Birarda G, Bedolla DE, Salomé M, Vaccari L, Calligaro C, Cotte M, Hesse B, Luisi F, Zabucchi G, Melato M, Rizzardi C. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates. Sci Rep 2015;5:12129. [PMID: 26159651 DOI: 10.1038/srep12129] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]