BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tamrazi B, Nguyen B, Liu CJ, Azen CG, Nelson MB, Dhall G, Nelson MD. Changes in Signal Intensity of the Dentate Nucleus and Globus Pallidus in Pediatric Patients: Impact of Brain Irradiation and Presence of Primary Brain Tumors Independent of Linear Gadolinium-based Contrast Agent Administration. Radiology 2018;287:452-60. [PMID: 29189102 DOI: 10.1148/radiol.2017171850] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Mallio CA, Ramalho J, Quattrocchi CC. Impact of Brain Irradiation, Chemotherapy, and Presence of Primary Brain Tumors on Changes in Signal Intensity after Exposure to Gadolinium-based Contrast Agents. Radiology 2019;290:575-6. [DOI: 10.1148/radiol.2018182349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Adin ME, Yousem DM. Hyperintense Dentate Nuclei at Precontrast T1-weighted MRI: Gadolinium Deposition or Brain Irradiation? Radiology 2018;288:632-3. [PMID: 29916780 DOI: 10.1148/radiol.2018180265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Rowe SK, Rodriguez D, Cohen E, Grundy R, Morgan PS, Jaspan T, Dineen RA. Switching from linear to macrocyclic gadolinium‐based contrast agents halts the relative T 1 ‐Weighted signal increase in deep gray matter of children with brain tumors: A retrospective study. J Magn Reson Imaging 2019;51:288-95. [DOI: 10.1002/jmri.26831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Mallio CA, Parillo M, Zobel BB, Parizel PM, Quattrocchi CC. Effect of Exposure to Gadodiamide and Brain Irradiation on T 1 ‐Weighted Images and ADC Maps of the Dentate Nucleus. J Magn Reson Imaging 2020;52:1525-30. [DOI: 10.1002/jmri.27198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Bi Q, Li H, Du J, Li H, Li Q, Wang J, Huang Y, Gong X. Gadolinium deposition in the brain is related to various contrast agents: a matched case-control study. Clin Radiol 2022:S0009-9260(22)00008-3. [PMID: 35094817 DOI: 10.1016/j.crad.2021.12.020] [Reference Citation Analysis]
6 Guo BJ, Yang ZL, Zhang LJ. Gadolinium Deposition in Brain: Current Scientific Evidence and Future Perspectives. Front Mol Neurosci 2018;11:335. [PMID: 30294259 DOI: 10.3389/fnmol.2018.00335] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 16.3] [Reference Citation Analysis]
7 McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018;289:517-34. [PMID: 30204075 DOI: 10.1148/radiol.2018181151] [Cited by in Crossref: 121] [Cited by in F6Publishing: 93] [Article Influence: 30.3] [Reference Citation Analysis]
8 Costa AF, van der Pol CB, Maralani PJ, Mcinnes MD, Shewchuk JR, Verma R, Hurrell C, Schieda N. Gadolinium Deposition in the Brain: A Systematic Review of Existing Guidelines and Policy Statement Issued by the Canadian Association of Radiologists. Can Assoc Radiol J 2018;69:373-82. [DOI: 10.1016/j.carj.2018.04.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
9 Tamrazi B, Liu CJ, Cen SY, Nelson MB, Dhall G, Nelson MD. Brain Irradiation and Gadobutrol Administration in Pediatric Patients with Brain Tumors: Effect on MRI Brain Signal Intensity. Radiology 2018;289:188-94. [PMID: 29989524 DOI: 10.1148/radiol.2018173057] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
10 Tang R, Haacke EM, Zhang Y, Wang Q, He N, Chen KM, Yan F. Impact of nasopharyngeal irradiation and gadolinium administration on changes in T1 signal intensity of the dentate nucleus in nasopharyngeal malignancy patients without intracranial abnormalities. J Magn Reson Imaging 2020;51:250-9. [PMID: 31124193 DOI: 10.1002/jmri.26800] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Fretellier N, Granottier A, Rasschaert M, Grindel AL, Baudimont F, Robert P, Idée JM, Corot C. Does Age Interfere With Gadolinium Toxicity and Presence in Brain and Bone Tissues?: A Comparative Gadoterate Versus Gadodiamide Study in Juvenile and Adult Rats. Invest Radiol 2019;54:61-71. [PMID: 30394964 DOI: 10.1097/RLI.0000000000000517] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
12 Quattrocchi CC, Ramalho J, van der Molen AJ, Rovira À, Radbruch A; GREC, European Gadolinium Retention Evaluation Consortium and the ESNR, European Society of Neuroradiology. Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. Eur Radiol 2019;29:3959-67. [PMID: 30413951 DOI: 10.1007/s00330-018-5803-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
13 Chehabeddine L, Al Saleh T, Baalbaki M, Saleh E, Khoury SJ, Hannoun S. Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Critical Reviews in Toxicology 2019;49:262-79. [DOI: 10.1080/10408444.2019.1592109] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
14 Ozturk K, Nascene D. Susceptibility-Weighted Imaging of the Pediatric Brain after Repeat Doses of Gadolinium-Based Contrast Agent. AJNR Am J Neuroradiol 2021;42:1136-43. [PMID: 33888459 DOI: 10.3174/ajnr.A7143] [Reference Citation Analysis]
15 Karakatsani ME, Pouliopoulos AN, Liu M, Jambawalikar SR, Konofagou EE. Contrast-Free Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Diffusion Tensor Imaging. IEEE Trans Biomed Eng 2021;68:2499-508. [PMID: 33360980 DOI: 10.1109/TBME.2020.3047575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gulino P, Bianchi A, Diciotti S, Scionti A, Sali L, Papadopulos P, Mascalchi M. The switch from Gd-DTPA to Gd-DOTA is not associated with decrease of the T1 signal intensity of the pallidus and dentate in a pediatric population. Acta Radiol 2021;62:368-76. [PMID: 32529894 DOI: 10.1177/0284185120927920] [Reference Citation Analysis]
17 Kale H, Yadav S. Can routine MRI spine T1 sequences be used for prediction of decreased bone density? Acta Radiol 2022;:2841851211063008. [PMID: 34989249 DOI: 10.1177/02841851211063008] [Reference Citation Analysis]
18 Ozturk K, Nascene D. Dentate Nucleus Signal Intensity Changes in Children with Adrenoleukodystrophy in Comparison to Primary Brain Tumor with and without Radiotherapy after Gadobutrol Administration. J Neuroimaging 2021;31:602-8. [PMID: 33783925 DOI: 10.1111/jon.12844] [Reference Citation Analysis]
19 Towbin AJ, Zhang B, Dillman JR. A retrospective cohort evaluation of the effect of multiple administrations of gadopentetate dimeglumine on brain magnetic resonance imaging T1-weighted signal. Pediatr Radiol 2021;51:457-70. [PMID: 33399985 DOI: 10.1007/s00247-020-04860-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]