BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang W, Yang Z, Kraman MD, Wang Q, Ou Z, Rojo MM, Yalamarthy AS, Chen V, Lian F, Ni JH, Liu S, Yu H, Sang L, Michaels J, Sievers DJ, Eden JG, Braun PV, Chen Q, Gong S, Senesky DG, Pop E, Li X. Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. Sci Adv 2020;6:eaay4508. [PMID: 32010770 DOI: 10.1126/sciadv.aay4508] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Huber R, Kern F, Karnaushenko DD, Eisner E, Lepucki P, Thampi A, Mirhajivarzaneh A, Becker C, Kang T, Baunack S, Büchner B, Karnaushenko D, Schmidt OG, Lubk A. Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics. Nat Commun 2022;13:3220. [PMID: 35680873 DOI: 10.1038/s41467-022-30703-y] [Reference Citation Analysis]
2 Yang Z, Kraman MD, Zheng Z, Zhao H, Zhang J, Gong S, Shao YV, Huang W, Wang P, Li X. Monolithic Heterogeneous Integration of 3D Radio Frequency L−C Elements by Self‐Rolled‐Up Membrane Nanotechnology. Adv Funct Mater 2020;30:2004034. [DOI: 10.1002/adfm.202004034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
3 Xu B, Lin X, Mei Y. Versatile Rolling Origami to Fabricate Functional and Smart Materials. Cell Reports Physical Science 2020;1:100244. [DOI: 10.1016/j.xcrp.2020.100244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Le HT, Haque RI, Ouyang Z, Lee SW, Fried SI, Zhao D, Qiu M, Han A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies. Microsyst Nanoeng 2021;7:59. [PMID: 34567771 DOI: 10.1038/s41378-021-00275-w] [Reference Citation Analysis]
5 Khandelwal A, Athreya N, Tu MQ, Janavicius LL, Yang Z, Milenkovic O, Leburton JP, Schroeder CM, Li X. Self-assembled microtubular electrodes for on-chip low-voltage electrophoretic manipulation of charged particles and macromolecules. Microsyst Nanoeng 2022;8:27. [PMID: 35310513 DOI: 10.1038/s41378-022-00354-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Gruen V, Helfricht N, Rosenfeldt S, Schenk AS. Interface-mediated formation of basic cobalt carbonate/polyethyleneimine composite microscrolls by strain-induced self-rolling. Chem Commun (Camb) 2021;57:7244-7. [PMID: 34190238 DOI: 10.1039/d1cc01136g] [Reference Citation Analysis]
7 Cheng X, Zhang F, Bo R, Shen Z, Pang W, Jin T, Song H, Xue Z, Zhang Y. An Anti-Fatigue Design Strategy for 3D Ribbon-Shaped Flexible Electronics. Adv Mater 2021;33:e2102684. [PMID: 34342056 DOI: 10.1002/adma.202102684] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
8 Luo X, Yang Z, Kraman M, Sang L, Zhang Y, Li X, Huang W. Physical Modeling of Monolithic Self-Rolled-Up Microtube Interdigital Capacitors. IEEE Trans Compon , Packag Manufact Technol 2022;12:359-67. [DOI: 10.1109/tcpmt.2021.3128884] [Reference Citation Analysis]
9 Moradi S, Jöhrmann N, Karnaushenko DD, Zschenderlein U, Karnaushenko D, Wunderle B, Schmidt OG. Mechanical Characterization of Compact Rolled‐up Microtubes Using In Situ Scanning Electron Microscopy Nanoindentation and Finite Element Analysis. Adv Eng Mater 2021;23:2100412. [DOI: 10.1002/adem.202100412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Saggau CN, Gabler F, Karnaushenko DD, Karnaushenko D, Ma L, Schmidt OG. Wafer-Scale High-Quality Microtubular Devices Fabricated via Dry-Etching for Optical and Microelectronic Applications. Adv Mater 2020;32:e2003252. [PMID: 32686201 DOI: 10.1002/adma.202003252] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
11 Guo Q, Pan Y, Lin J, Wan G, Xu B, Hua N, Zheng C, Huang Y, Mei Y, Chen W, Chen Z. Programmable 3D Self‐Folding Structures with Strain Engineering. Advanced Intelligent Systems 2020;2:2000101. [DOI: 10.1002/aisy.202000101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Reference Citation Analysis]
13 Khandelwal A, Ren Z, Namiki S, Yang Z, Choudhary N, Li C, Wang P, Mi Z, Li X. Self-Rolled-Up Aluminum Nitride-Based 3D Architectures Enabled by Record-High Differential Stress. ACS Appl Mater Interfaces 2022. [PMID: 35700345 DOI: 10.1021/acsami.2c06637] [Reference Citation Analysis]
14 Guo Q, Wei Z, Xue Z, Jiang C, Zhao H, Zhang Y, Wang G, Chen D, Di Z, Mei Y. Semidry release of nanomembranes for tubular origami. Appl Phys Lett 2020;117:113106. [DOI: 10.1063/5.0023096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]