BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sadick M, Attenberger U, Kraenzlin B, Kayed H, Schoenberg SO, Gretz N, Schock-Kusch D. Two non-invasive GFR-estimation methods in rat models of polycystic kidney disease: 3.0 Tesla dynamic contrast-enhanced MRI and optical imaging. Nephrol Dial Transplant 2011;26:3101-8. [PMID: 21444361 DOI: 10.1093/ndt/gfr148] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Subramanian R, Zhu X, Kerr SJ, Esmay JD, Louie SW, Edson KZ, Walter S, Fitzsimmons M, Wagner M, Soto M, Pham R, Wilson SF, Skiles GL. Nonclinical Pharmacokinetics, Disposition, and Drug-Drug Interaction Potential of a Novel D-Amino Acid Peptide Agonist of the Calcium-Sensing Receptor AMG 416 (Etelcalcetide). Drug Metabolism and Disposition 2016;44:1319-31. [DOI: 10.1124/dmd.115.068007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
2 Ellery SJ, Cai X, Walker DD, Dickinson H, Kett MM. Transcutaneous measurement of glomerular filtration rate in small rodents: Through the skin for the win?: Transcutaneous measure of GFR in rodents. Nephrology 2015;20:117-23. [DOI: 10.1111/nep.12363] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
3 Redfern WS, Ewart LC, Lainée P, Pinches M, Robinson S, Valentin J. Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res 2013;2:209. [DOI: 10.1039/c3tx20093k] [Cited by in Crossref: 42] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
4 Zöllner FG, Zimmer F, Klotz S, Hoeger S, Schad LR. Functional imaging of acute kidney injury at 3 Tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Z Med Phys 2015;25:58-65. [PMID: 24629306 DOI: 10.1016/j.zemedi.2014.01.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
5 Herrera Pérez Z, Weinfurter S, Gretz N. Transcutaneous Assessment of Renal Function in Conscious Rodents. J Vis Exp 2016;:e53767. [PMID: 27078159 DOI: 10.3791/53767] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
6 Zöllner FG, Kalayciyan R, Chacón-caldera J, Zimmer F, Schad LR. Pre-clinical functional Magnetic Resonance Imaging part I: The kidney. Zeitschrift für Medizinische Physik 2014;24:286-306. [DOI: 10.1016/j.zemedi.2014.05.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
7 Nejad KH, Gharib-Naseri MK, Sarkaki A, Dianat M, Badavi M, Farbood Y. Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat. Iran J Basic Med Sci 2017;20:75-82. [PMID: 28133528 DOI: 10.22038/ijbms.2017.8098] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
8 Zöllner FG, Zimmer F, Klotz S, Hoeger S, Schad LR. Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus two-compartment filtration model. Magn Reson Imaging 2014;32:781-5. [PMID: 24631714 DOI: 10.1016/j.mri.2014.02.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
9 Kong H, Chen B, Zhang X, Wang C, Yang M, Yang L, Wang X, Zhang J. Quantitative renal function assessment of atheroembolic renal disease using view-shared compressed sensing based dynamic-contrast enhanced MR imaging: An in vivo study. Magn Reson Imaging 2020;65:67-74. [PMID: 31654738 DOI: 10.1016/j.mri.2019.10.007] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Hu E, Hong FT, Aral J, Long J, Piper DE, Poppe L, Andrews KL, Hager T, Davis C, Li H, Wong P, Gavva N, Shi L, Zhu DXD, Lehto SG, Xu C, Miranda LP. Discovery of Selective Pituitary Adenylate Cyclase 1 Receptor (PAC1R) Antagonist Peptides Potent in a Maxadilan/PACAP38-Induced Increase in Blood Flow Pharmacodynamic Model. J Med Chem 2021;64:3427-38. [PMID: 33715378 DOI: 10.1021/acs.jmedchem.0c01396] [Reference Citation Analysis]
11 Pedersen M, Irrera P, Dastrù W, Zöllner FG, Bennett KM, Beeman SC, Bretthorst GL, Garbow JR, Longo DL. Dynamic Contrast Enhancement (DCE) MRI-Derived Renal Perfusion and Filtration: Basic Concepts. Methods Mol Biol 2021;2216:205-27. [PMID: 33476002 DOI: 10.1007/978-1-0716-0978-1_12] [Reference Citation Analysis]
12 Buckley BJ, Aboelela A, Majed H, Bujaroski RS, White KL, Powell AK, Wang W, Katneni K, Saunders J, Shackleford DM, Charman SA, Cook GM, Kelso MJ, Ranson M. Systematic evaluation of structure-property relationships and pharmacokinetics in 6-(hetero)aryl-substituted matched pair analogs of amiloride and 5-(N,N-hexamethylene)amiloride. Bioorg Med Chem 2021;37:116116. [PMID: 33799173 DOI: 10.1016/j.bmc.2021.116116] [Reference Citation Analysis]
13 Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021;49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Reference Citation Analysis]
14 Xie L, Qi Y, Subashi E, Liao G, Miller-DeGraff L, Jetten AM, Johnson GA. 4D MRI of polycystic kidneys from rapamycin-treated Glis3-deficient mice. NMR Biomed 2015;28:546-54. [PMID: 25810360 DOI: 10.1002/nbm.3281] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jiang K, Tang H, Mishra PK, Macura SI, Lerman LO. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI. Magn Reson Med 2018;79:2935-43. [PMID: 29034514 DOI: 10.1002/mrm.26955] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
16 Romero CA, Cabral G, Knight RA, Ding G, Peterson EL, Carretero OA. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats. Am J Physiol Renal Physiol 2018;314:F99-F106. [PMID: 28978533 DOI: 10.1152/ajprenal.00332.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
17 Zöllner FG, Schock-Kusch D, Bäcker S, Neudecker S, Gretz N, Schad LR. Simultaneous measurement of kidney function by dynamic contrast enhanced MRI and FITC-sinistrin clearance in rats at 3 tesla: initial results. PLoS One 2013;8:e79992. [PMID: 24260332 DOI: 10.1371/journal.pone.0079992] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wang F, Jiang RT, Tantawy MN, Borza DB, Takahashi K, Gore JC, Harris RC, Takahashi T, Quarles CC. Repeatability and sensitivity of high resolution blood volume mapping in mouse kidney disease. J Magn Reson Imaging 2014;39:866-71. [PMID: 24006202 DOI: 10.1002/jmri.24242] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
19 Schock-Kusch D, Geraci S, Ermeling E, Shulhevich Y, Sticht C, Hesser J, Stsepankou D, Neudecker S, Pill J, Schmitt R, Melk A. Reliability of transcutaneous measurement of renal function in various strains of conscious mice. PLoS One 2013;8:e71519. [PMID: 23977062 DOI: 10.1371/journal.pone.0071519] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
20 Du Y, An S, Liu L, Li L, Zhou XJ, Mason RP, Mohan C. Serial non-invasive monitoring of renal disease following immune-mediated injury using near-infrared optical imaging. PLoS One 2012;7:e43941. [PMID: 23049742 DOI: 10.1371/journal.pone.0043941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
21 Dossetter AG, Beeley H, Bowyer J, Cook CR, Crawford JJ, Finlayson JE, Heron NM, Heyes C, Highton AJ, Hudson JA, Jestel A, Kenny PW, Krapp S, Martin S, Macfaul PA, Mcguire TM, Gutierrez PM, Morley AD, Morris JJ, Page KM, Ribeiro LR, Sawney H, Steinbacher S, Smith C, Vickers M. (1 R ,2 R )- N -(1-Cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3- b ]indole-2-carbonyl)cyclohexanecarboxamide (AZD4996): A Potent and Highly Selective Cathepsin K Inhibitor for the Treatment of Osteoarthritis. J Med Chem 2012;55:6363-74. [DOI: 10.1021/jm3007257] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]