BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Russo M, Bevilacqua P, Netti PA, Torino E. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI. Sci Rep 2016;6:37906. [PMID: 27901092 DOI: 10.1038/srep37906] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Sharma M, Monika, Thakur P, Saini RV, Kumar R, Torino E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci Rep 2020;10:10934. [PMID: 32616751 DOI: 10.1038/s41598-020-67673-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 de Souza AB, Chaud MV, Santana MHA. Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydrate Polymers 2019;222:115001. [DOI: 10.1016/j.carbpol.2019.115001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
3 Patil-Sen Y, Torino E, De Sarno F, Ponsiglione AM, Chhabria V, Ahmed W, Mercer T. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent. Nanotechnology 2020;31:375102. [PMID: 32392545 DOI: 10.1088/1361-6528/ab91f6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
4 De Sarno F, Ponsiglione AM, Russo M, Grimaldi AM, Forte E, Netti PA, Torino E. Water-Mediated Nanostructures for Enhanced MRI: Impact of Water Dynamics on Relaxometric Properties of Gd-DTPA. Theranostics 2019;9:1809-24. [PMID: 31037140 DOI: 10.7150/thno.27313] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
5 Hwang YJ, Park M, Park MK, Lee JH, Oh SH, Suh MW. High-Molecular-Weight Hyaluronic Acid Vehicle Can Deliver Gadolinium Into the Cochlea at a Higher Concentration for a Longer Duration: A 9.4-T Magnetic Resonance Imaging Study. Front Neurol 2021;12:650884. [PMID: 34248816 DOI: 10.3389/fneur.2021.650884] [Reference Citation Analysis]
6 Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines 2021;9:1551. [PMID: 34829780 DOI: 10.3390/biomedicines9111551] [Reference Citation Analysis]
7 Ponsiglione AM, Russo M, Torino E. Glycosaminoglycans and Contrast Agents: The Role of Hyaluronic Acid as MRI Contrast Enhancer. Biomolecules 2020;10:E1612. [PMID: 33260661 DOI: 10.3390/biom10121612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xiong Q, Wang Y, Wan J, Yuan P, Chen H, Zhang L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. International Journal of Biological Macromolecules 2020;147:937-45. [DOI: 10.1016/j.ijbiomac.2019.10.060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018;10:E267. [PMID: 30544868 DOI: 10.3390/pharmaceutics10040267] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
10 Costagliola di Polidoro A, Grassia A, De Sarno F, Bevilacqua P, Mollo V, Romano E, Di Taranto MD, Fortunato G, Bracale UM, Tramontano L, Diomaiuti TC, Torino E. Targeting Nanostrategies for Imaging of Atherosclerosis. Contrast Media Mol Imaging 2021;2021:6664471. [PMID: 33880112 DOI: 10.1155/2021/6664471] [Reference Citation Analysis]
11 De Sarno F, Ponsiglione AM, Grimaldi AM, Netti PA, Torino E. Effect of crosslinking agent to design nanostructured hyaluronic acid-based hydrogels with improved relaxometric properties. Carbohydrate Polymers 2019;222:114991. [DOI: 10.1016/j.carbpol.2019.114991] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
12 Chen H, Li X, Liu F, Zhang H, Wang Z. Renal Clearable Peptide Functionalized NaGdF4 Nanodots for High-Efficiency Tracking Orthotopic Colorectal Tumor in Mouse. Mol Pharm 2017;14:3134-41. [PMID: 28727430 DOI: 10.1021/acs.molpharmaceut.7b00361] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
13 Russo M, Grimaldi AM, Bevilacqua P, Tammaro O, Netti PA, Torino E. PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine. Nanomedicine 2017;12:2211-22. [DOI: 10.2217/nnm-2017-0103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
14 Russo M, Bevilacqua P, Netti PA, Torino E. Commentary on "A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for Enhanced MRI". Mol Imaging 2017;16:1536012117706237. [PMID: 28654388 DOI: 10.1177/1536012117706237] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
15 Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 2017;17:1856-83. [DOI: 10.1039/c7lc00242d] [Cited by in Crossref: 110] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
16 Vecchione D, Grimaldi AM, Forte E, Bevilacqua P, Netti PA, Torino E. Hybrid Core-Shell (HyCoS) Nanoparticles produced by Complex Coacervation for Multimodal Applications. Sci Rep 2017;7:45121. [PMID: 28327584 DOI: 10.1038/srep45121] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
17 Tammaro O, Costagliola di Polidoro A, Romano E, Netti PA, Torino E. A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications. Sci Rep 2020;10:6028. [PMID: 32265496 DOI: 10.1038/s41598-020-63234-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Zhang Q, Liang J, Yun SLJ, Liang K, Yang D, Gu Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomater Sci 2020;8:4129-46. [PMID: 32638731 DOI: 10.1039/d0bm00761g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Maimouni I, Cejas CM, Cossy J, Tabeling P, Russo M. Microfluidics Mediated Production of Foams for Biomedical Applications. Micromachines (Basel) 2020;11:E83. [PMID: 31940876 DOI: 10.3390/mi11010083] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Smeraldo A, Netti PA, Torino E. New Strategies in the Design of Paramagnetic CAs. Contrast Media Mol Imaging 2020;2020:4327479. [PMID: 33071681 DOI: 10.1155/2020/4327479] [Reference Citation Analysis]
21 Lari AS, Khatibi A, Zahedi P, Ghourchian H. Microfluidic-assisted production of poly(ɛ-caprolactone) and cellulose acetate nanoparticles: effects of polymers, surfactants, and flow rate ratios. Polym Bull 2021;78:5449-66. [DOI: 10.1007/s00289-020-03367-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Zhang L, Chen Q, Ma Y, Sun J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS Appl Bio Mater 2020;3:107-20. [DOI: 10.1021/acsabm.9b00853] [Cited by in Crossref: 32] [Cited by in F6Publishing: 11] [Article Influence: 10.7] [Reference Citation Analysis]
23 Russo M, Ponsiglione AM, Forte E, Netti PA, Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine (Lond) 2017;12:2199-210. [PMID: 28816102 DOI: 10.2217/nnm-2017-0098] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
24 Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA, Torino E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers (Basel) 2021;13:503. [PMID: 33525655 DOI: 10.3390/cancers13030503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Pitingolo G, Taly V, Nastruzzi C. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits. Biomicrofluidics 2019;13:024106. [PMID: 31040886 DOI: 10.1063/1.5086535] [Reference Citation Analysis]
26 Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021;9:3543-75. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chiesa E, Riva F, Dorati R, Greco A, Ricci S, Pisani S, Patrini M, Modena T, Conti B, Genta I. On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation. Pharmaceutics 2020;12:E260. [PMID: 32183027 DOI: 10.3390/pharmaceutics12030260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Palumbo FS, Fiorica C, Pitarresi G, Zingales M, Bologna E, Giammona G. Multifibrillar bundles of a self-assembling hyaluronic acid derivative obtained through a microfluidic technique for aortic smooth muscle cell orientation and differentiation. Biomater Sci 2018;6:2518-26. [DOI: 10.1039/c8bm00647d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
29 Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018;128:54-83. [PMID: 28801093 DOI: 10.1016/j.addr.2017.08.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 16.4] [Reference Citation Analysis]
30 Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. Nano Express 2020;1:032004. [DOI: 10.1088/2632-959x/abcca6] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
31 Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2020;12:E1566. [PMID: 32679750 DOI: 10.3390/polym12071566] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
32 Alomari M, Almohazey D, Almofty S, Alhibshi A, Almansour I, Kaewsaneha C, Badri W, Fessi H, Elaissari A. Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics. Polysaccharide Carriers for Drug Delivery. Elsevier; 2019. pp. 179-216. [DOI: 10.1016/b978-0-08-102553-6.00008-8] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]