BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010;110:2921-59. [PMID: 20067234 DOI: 10.1021/cr900232t] [Cited by in Crossref: 466] [Cited by in F6Publishing: 406] [Article Influence: 42.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Zhu X, Tang X, Wu C, Zhou Z, Sun C, Deng S, Ai H, Gao J. A multiple gadolinium complex decorated fullerene as a highly sensitive T 1 contrast agent. Chem Commun 2015;51:4390-3. [DOI: 10.1039/c5cc00285k] [Cited by in Crossref: 47] [Cited by in F6Publishing: 6] [Article Influence: 7.8] [Reference Citation Analysis]
2 La cava F, Fringuello mingo A, Miragoli L, Terreno E, Cappelletti E, Lattuada L, Poggi L, Colombo serra S. Synthesis, Characterization, and Biodistribution of a Dinuclear Gadolinium Complex with Improved Properties as a Blood Pool MRI Agent. ChemMedChem 2018;13:824-34. [DOI: 10.1002/cmdc.201800052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
3 Zhou M, Li L, Xie W, He Z, Li J. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromol Rapid Commun 2021;42:e2100248. [PMID: 34272782 DOI: 10.1002/marc.202100248] [Reference Citation Analysis]
4 Lin W, Lin C, Lin Y, Wu S, Huang Y, Hung Y, Chang C, Mou C. High payload Gd( iii ) encapsulated in hollow silica nanospheres for high resolution magnetic resonance imaging. J Mater Chem B 2013;1:639-45. [DOI: 10.1039/c2tb00283c] [Cited by in Crossref: 25] [Article Influence: 3.1] [Reference Citation Analysis]
5 Cheng W, Rajendran R, Ren W, Gu L, Zhang Y, Chuang K, Liu Y. A facile synthetic approach to a biodegradable polydisulfide MRI contrast agent. J Mater Chem B 2014;2:5295-301. [DOI: 10.1039/c4tb00413b] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
6 Fatehbasharzad P, Stefania R, Carrera C, Hawala I, Delli Castelli D, Baroni S, Colombo M, Prosperi D, Aime S. Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials (Basel) 2020;10:E1115. [PMID: 32516931 DOI: 10.3390/nano10061115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Irure A, Marradi M, Arnáiz B, Genicio N, Padro D, Penadés S. Sugar/gadolinium-loaded gold nanoparticles for labelling and imaging cells by magnetic resonance imaging. Biomater Sci 2013;1:658-68. [PMID: 32481838 DOI: 10.1039/c3bm60032g] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
8 Guo C, Sun L, She W, Li N, Jiang L, Luo K, Gong Q, Gu Z. A dendronized heparin–gadolinium polymer self-assembled into a nanoscale system as a potential magnetic resonance imaging contrast agent. Polym Chem 2016;7:2531-41. [DOI: 10.1039/c6py00059b] [Cited by in Crossref: 20] [Article Influence: 4.0] [Reference Citation Analysis]
9 Tóth É, Helm L, Merbach A. Relaxivity of Gadolinium(III) Complexes: Theory and Mechanism. In: Merbach A, Helm L, Tóth É, editors. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Chichester: John Wiley & Sons, Ltd; 2013. pp. 25-81. [DOI: 10.1002/9781118503652.ch2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
10 Martinelli J, Thangavel K, Tei L, Botta M. Dendrimeric β-Cyclodextrin/Gd III Chelate Supramolecular Host-Guest Adducts as High-Relaxivity MRI Probes. Chem Eur J 2014;20:10944-52. [DOI: 10.1002/chem.201402418] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
11 Yang Y, Chen S, Li H, Yuan Y, Zhang Z, Xie J, Hwang DW, Zhang A, Liu M, Zhou X. Engineered Paramagnetic Graphene Quantum Dots with Enhanced Relaxivity for Tumor Imaging. Nano Lett 2019;19:441-8. [DOI: 10.1021/acs.nanolett.8b04252] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
12 Reynolds F, Kelly KA. Techniques for Molecular Imaging Probe Design. Mol Imaging 2011;10:7290.2011.00003. [DOI: 10.2310/7290.2011.00003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
13 Zhu Q, Qiu F, Zhu B, Zhu X. Hyperbranched polymers for bioimaging. RSC Adv 2013;3:2071-83. [DOI: 10.1039/c2ra22210h] [Cited by in Crossref: 81] [Article Influence: 10.1] [Reference Citation Analysis]
14 Townley HE, Rapa E, Wakefield G, Dobson PJ. Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine: Nanotechnology, Biology and Medicine 2012;8:526-36. [DOI: 10.1016/j.nano.2011.08.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
15 Garcia J, Allen MJ. Interaction of Biphenyl-Functionalized Eu(2+)-Containing Cryptate with Albumin: Implications to Contrast Agents in Magnetic Resonance Imaging. Inorganica Chim Acta 2012;393:324-7. [PMID: 23162162 DOI: 10.1016/j.ica.2012.07.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
16 Gambino G, Tei L, Carniato F, Botta M. Amphiphilic Ditopic Bis-Aqua Gd-AAZTA-like Complexes Enhance Relaxivity of Lipidic MRI Nanoprobes. Chem Asian J 2016;11:2139-43. [DOI: 10.1002/asia.201600669] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
17 Shin HW, Sohn H, Jeong YH, Lee SM. Construction of Paramagnetic Manganese-Chelated Polymeric Nanoparticles Using Pyrene-End-Modified Double-Hydrophilic Block Copolymers for Enhanced Magnetic Resonance Relaxivity: A Comparative Study with Cisplatin Pharmacophore. Langmuir 2019;35:6421-8. [PMID: 30998363 DOI: 10.1021/acs.langmuir.9b00406] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Regueiro-Figueroa M, Gündüz S, Patinec V, Logothetis NK, Esteban-Gómez D, Tripier R, Angelovski G, Platas-Iglesias C. Gd(3+)-Based Magnetic Resonance Imaging Contrast Agent Responsive to Zn(2+). Inorg Chem 2015;54:10342-50. [PMID: 26468992 DOI: 10.1021/acs.inorgchem.5b01719] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
19 Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018;8:2521-48. [PMID: 29721097 DOI: 10.7150/thno.23789] [Cited by in Crossref: 72] [Cited by in F6Publishing: 51] [Article Influence: 24.0] [Reference Citation Analysis]
20 Carniato F, Tei L, Phadngam S, Isidoro C, Botta M. NaGdF 4 Nanoparticles Coated with Functionalised Ethylenediaminetetraacetic Acid as Versatile Probes for Dual Optical and Magnetic Resonance Imaging. ChemPlusChem 2015;80:503-10. [DOI: 10.1002/cplu.201402245] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv Mater 2019;31:e1804567. [PMID: 30600553 DOI: 10.1002/adma.201804567] [Cited by in Crossref: 105] [Cited by in F6Publishing: 75] [Article Influence: 52.5] [Reference Citation Analysis]
22 Besenius P, Heynens JL, Straathof R, Nieuwenhuizen MM, Bomans PH, Terreno E, Aime S, Strijkers GJ, Nicolay K, Meijer EW. Paramagnetic self-assembled nanoparticles as supramolecular MRI contrast agents. Contrast Media Mol Imaging 2012;7:356-61. [PMID: 22539406 DOI: 10.1002/cmmi.498] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
23 Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 2019;7:2588-607. [DOI: 10.1039/c8tb03240h] [Cited by in Crossref: 16] [Article Influence: 8.0] [Reference Citation Analysis]
24 Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, Ai H, Gao J. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T 1 contrast ability. Nanoscale 2016;8:3768-74. [DOI: 10.1039/c5nr08402d] [Cited by in Crossref: 42] [Cited by in F6Publishing: 8] [Article Influence: 8.4] [Reference Citation Analysis]
25 Boros E, Polasek M, Zhang Z, Caravan P. Gd(DOTAla): a single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development. J Am Chem Soc 2012;134:19858-68. [PMID: 23157602 DOI: 10.1021/ja309187m] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 6.6] [Reference Citation Analysis]
26 Leiro V, Garcia JP, Tomás H, Pêgo AP. The Present and the Future of Degradable Dendrimers and Derivatives in Theranostics. Bioconjug Chem 2015;26:1182-97. [PMID: 25826129 DOI: 10.1021/bc5006224] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 6.5] [Reference Citation Analysis]
27 Tao C, Zheng Q, An L, He M, Lin J, Tian Q, Yang S. T₁-Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. Nanomaterials (Basel) 2019;9:E170. [PMID: 30704072 DOI: 10.3390/nano9020170] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
28 Dumont MF, Baligand C, Li Y, Knowles ES, Meisel MW, Walter GA, Talham DR. DNA surface modified gadolinium phosphate nanoparticles as MRI contrast agents. Bioconjug Chem 2012;23:951-7. [PMID: 22462809 DOI: 10.1021/bc200553h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
29 Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:708-21. [PMID: 25683790 DOI: 10.1002/wnan.1335] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
30 Jackson AW, Chandrasekharan P, Ramasamy B, Goggi J, Chuang KH, He T, Robins EG. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. Biomacromolecules 2016;17:3902-10. [PMID: 27936729 DOI: 10.1021/acs.biomac.6b01256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
31 Wang X, Tu M, Yan K, Li P, Pang L, Gong Y, Li Q, Liu R, Xu Z, Xu H, Chu PK. Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging. ACS Appl Mater Interfaces 2015;7:24523-32. [PMID: 26484385 DOI: 10.1021/acsami.5b08802] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
32 Sánchez-nieves J, Ortega P, Muñoz-fernández MÁ, Gómez R, de la Mata FJ. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetrahedron 2010;66:9203-13. [DOI: 10.1016/j.tet.2010.09.063] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 3.5] [Reference Citation Analysis]
33 Harris M, Henoumont C, Peeters W, Toyouchi S, Vander Elst L, Parac-vogt TN. Amphiphilic complexes of Ho( iii ), Dy( iii ), Tb( iii ) and Eu( iii ) for optical and high field magnetic resonance imaging. Dalton Trans 2018;47:10646-53. [DOI: 10.1039/c8dt01227j] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Wang F, Liu J. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale 2013;5:12375. [DOI: 10.1039/c3nr04143c] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
35 Albertazzi L, Fernandez-Villamarin M, Riguera R, Fernandez-Megia E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjug Chem 2012;23:1059-68. [PMID: 22482890 DOI: 10.1021/bc300079h] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
36 Guo H, Song S, Dai T, Sun K, Zhou G, Li M, Mann S, Dou H. Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. ACS Appl Mater Interfaces 2020;12:17302-13. [PMID: 32212678 DOI: 10.1021/acsami.0c03433] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
37 Kerridge A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem Commun (Camb) 2017;53:6685-95. [PMID: 28569895 DOI: 10.1039/c7cc00962c] [Cited by in Crossref: 58] [Cited by in F6Publishing: 10] [Article Influence: 19.3] [Reference Citation Analysis]
38 Luo Q, Xiao X, Dai X, Duan Z, Pan D, Zhu H, Li X, Sun L, Luo K, Gong Q. Cross-Linked and Biodegradable Polymeric System as a Safe Magnetic Resonance Imaging Contrast Agent. ACS Appl Mater Interfaces 2018;10:1575-88. [PMID: 29260844 DOI: 10.1021/acsami.7b16345] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
39 Li X, Cai Z, Jiang L, He Z, Zhu J. Metal–Ligand Coordination Nanomaterials for Biomedical Imaging. Bioconjugate Chem 2020;31:332-9. [DOI: 10.1021/acs.bioconjchem.9b00642] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
40 Sierra-martin B, Fernandez-barbero A. Multifunctional hybrid nanogels for theranostic applications. Soft Matter 2015;11:8205-16. [DOI: 10.1039/c5sm01789k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 4.2] [Reference Citation Analysis]
41 Zhou S, Wu Z, Chen X, Jia L, Zhu W. PEGylated Polyethylenimine as Enhanced T 1 Contrast Agent for Efficient Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2014;6:11459-69. [DOI: 10.1021/am5020875] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
42 Angelovski G. Biosensitive Kontrastmittel für die Magnetresonanztomographie - was wir mit ihnen wirklich tun können. Angew Chem 2016;128:7152-61. [DOI: 10.1002/ange.201510956] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
43 Sowers MA, McCombs JR, Wang Y, Paletta JT, Morton SW, Dreaden EC, Boska MD, Ottaviani MF, Hammond PT, Rajca A, Johnson JA. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat Commun 2014;5:5460. [PMID: 25403521 DOI: 10.1038/ncomms6460] [Cited by in Crossref: 167] [Cited by in F6Publishing: 138] [Article Influence: 23.9] [Reference Citation Analysis]
44 Sebby KB, Walter ED, Usselman RJ, Cloninger MJ, Singel DJ. End-group distributions of multiple generations of spin-labeled PAMAM dendrimers. J Phys Chem B 2011;115:4613-20. [PMID: 21469686 DOI: 10.1021/jp112390d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
45 Wu X, He X, Zhong L, Lin S, Wang D, Zhu X, Yan D. Water-soluble dendritic-linear triblock copolymer-modified magnetic nanoparticles: preparation, characterization and drug release properties. J Mater Chem 2011;21:13611. [DOI: 10.1039/c1jm11613d] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
46 Grogna M, Cloots R, Luxen A, Jérôme C, Passirani C, Lautram N, Desreux J, Detrembleur C. Polymer micelles decorated by gadolinium complexes as MRI blood contrast agents: design, synthesis and properties. Polym Chem 2010;1:1485. [DOI: 10.1039/c0py00117a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
47 Hu J, Su Y, Zhang H, Xu T, Cheng Y. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials 2011;32:9950-9. [DOI: 10.1016/j.biomaterials.2011.09.016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
48 Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X. Dendrimer-Assisted Formation of Fe3O4/Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors. Small 2015;11:4584-93. [PMID: 26061810 DOI: 10.1002/smll.201500856] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 15.7] [Reference Citation Analysis]
49 Cai Y, Wang Y, Xu H, Cao C, Zhu R, Tang X, Zhang T, Pan Y. Positive magnetic resonance angiography using ultrafine ferritin-based iron oxide nanoparticles. Nanoscale 2019;11:2644-54. [DOI: 10.1039/c8nr06812g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 9.5] [Reference Citation Analysis]
50 Wei R, Zhou T, Sun C, Lin H, Yang L, Ren BW, Chen Z, Gao J. Iron-oxide-based twin nanoplates with strong T2 relaxation shortening for contrast-enhanced magnetic resonance imaging. Nanoscale 2018;10:18398-406. [PMID: 30256373 DOI: 10.1039/c8nr04995e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
51 Lakshmi K, Rangasamy R, Prathibha E, Sridhar A. Immobilization of Pt nanoparticles on magnetite–poly (epoxyamine) nanocomposite for the reduction of p-nitrophenol. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1137-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Granato L, Longo D, Boutry S, Vander Elst L, Henoumont C, Aime S, Muller RN, Laurent S. Synthesis and Relaxometric Characterization of New Poly[ N , N ‐bis(3‐aminopropyl)glycine] (PAPGly) Dendrons Gd‐Based Contrast Agents and Their in Vivo Study by Using the Dynamic Contrast‐Enhanced MRI Technique at Low Field (1 T). C&B 2019;16. [DOI: 10.1002/cbdv.201900322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Chanyshev B, Shainberg A, Isak A, Litinsky A, Chepurko Y, Tosh DK, Phan K, Gao ZG, Hochhauser E, Jacobson KA. Anti-ischemic effects of multivalent dendrimeric A₃ adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol Res 2012;65:338-46. [PMID: 22154845 DOI: 10.1016/j.phrs.2011.11.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
54 Olankitwanit A, Kathirvelu V, Rajca S, Eaton GR, Eaton SS, Rajca A. Calix[4]arene nitroxide tetraradical and octaradical. Chem Commun (Camb) 2011;47:6443-5. [PMID: 21541435 DOI: 10.1039/c1cc11172h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
55 Aoki D, Takata T. Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: Synthesis and topology transformation. Polymer 2017;128:276-96. [DOI: 10.1016/j.polymer.2017.08.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
56 Yang L, Wang Z, Ma L, Li A, Xin J, Wei R, Lin H, Wang R, Chen Z, Gao J. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS Nano 2018;12:4605-14. [PMID: 29672022 DOI: 10.1021/acsnano.8b01048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
57 Li X, Sun L, Wei X, Luo Q, Cai H, Xiao X, Zhu H, Luo K. Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. J Mater Chem B 2017;5:2763-74. [DOI: 10.1039/c6tb03253b] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
58 Chandrasekharan P, Yong C, Poh Z, He T, He Z, Liu S, Robins EG, Chuang K, Yang C. Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials 2012;33:9225-31. [DOI: 10.1016/j.biomaterials.2012.08.071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
59 Sun X, Cai Y, Xu Z, Zhu D. Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules 2019;24:E1477. [PMID: 30991689 DOI: 10.3390/molecules24081477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
60 Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, Shao H. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg 2018;8:957-70. [PMID: 30505724 DOI: 10.21037/qims.2018.10.07] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
61 Park JA, Lee YJ, Ko IO, Kim TJ, Chang Y, Lim SM, Kim KM, Kim JY. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun 2014;455:246-50. [PMID: 25449282 DOI: 10.1016/j.bbrc.2014.10.155] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
62 Debroye E, Eliseeva SV, Laurent S, Vander Elst L, Muller RN, Parac-vogt TN. Micellar self-assemblies of gadolinium(iii)/europium(iii) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Trans 2014;43:3589. [DOI: 10.1039/c3dt52842a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
63 Harris M, Vander Elst L, Laurent S, Parac-Vogt TN. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Trans 2016;45:4791-801. [PMID: 26865457 DOI: 10.1039/c5dt04801j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
64 Rajca A, Wang Y, Boska M, Paletta JT, Olankitwanit A, Swanson MA, Mitchell DG, Eaton SS, Eaton GR, Rajca S. Organic radical contrast agents for magnetic resonance imaging. J Am Chem Soc 2012;134:15724-7. [PMID: 22974177 DOI: 10.1021/ja3079829] [Cited by in Crossref: 121] [Cited by in F6Publishing: 98] [Article Influence: 13.4] [Reference Citation Analysis]
65 Wang Z, He L, Liu B, Zhou LP, Cai LX, Hu SJ, Li XZ, Li Z, Chen T, Li X, Sun QF. Coordination-Assembled Water-Soluble Anionic Lanthanide Organic Polyhedra for Luminescent Labeling and Magnetic Resonance Imaging. J Am Chem Soc 2020;142:16409-19. [PMID: 32882131 DOI: 10.1021/jacs.0c07514] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 18.0] [Reference Citation Analysis]
66 Davies GL, Kramberger I, Davis JJ. Environmentally responsive MRI contrast agents. Chem Commun (Camb) 2013;49:9704-21. [PMID: 24040650 DOI: 10.1039/c3cc44268c] [Cited by in Crossref: 97] [Cited by in F6Publishing: 87] [Article Influence: 13.9] [Reference Citation Analysis]
67 Wang Z, Carniato F, Xie Y, Huang Y, Li Y, He S, Zang N, Rinehart JD, Botta M, Gianneschi NC. High Relaxivity Gadolinium-Polydopamine Nanoparticles. Small 2017;13. [PMID: 29024478 DOI: 10.1002/smll.201701830] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
68 Lawson D, Barge A, Terreno E, Parker D, Aime S, Botta M. Optimizing the high-field relaxivity by self-assembling of macrocyclic Gd(III) complexes. Dalton Trans 2015;44:4910-7. [PMID: 25411928 DOI: 10.1039/c4dt02971b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019;119:957-1057. [PMID: 30350585 DOI: 10.1021/acs.chemrev.8b00363] [Cited by in Crossref: 389] [Cited by in F6Publishing: 297] [Article Influence: 129.7] [Reference Citation Analysis]
70 Phukan B, Mukherjee C, Goswami U, Sarmah A, Mukherjee S, Sahoo SK, Moi SC. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent. Inorg Chem 2018;57:2631-8. [PMID: 29424537 DOI: 10.1021/acs.inorgchem.7b03039] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
71 Hu YH. The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small 2014;10:1451-2. [PMID: 24376224 DOI: 10.1002/smll.201303644] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
72 Tsai ZT, Tsai FY, Yang WC, Wang JF, Liu CL, Shen CR, Yen TC. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent. Mar Drugs 2012;10:2403-14. [PMID: 23203267 DOI: 10.3390/md10112403] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
73 Gündüz S, Savić T, Toljić Đ, Angelovski G. Preparation and In Vitro Characterization of Dendrimer-based Contrast Agents for Magnetic Resonance Imaging. J Vis Exp 2016. [PMID: 28060285 DOI: 10.3791/54776] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
74 Martínez-Banderas AI, Aires A, Plaza-García S, Colás L, Moreno JA, Ravasi T, Merzaban JS, Ramos-Cabrer P, Cortajarena AL, Kosel J. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology 2020;18:42. [PMID: 32164746 DOI: 10.1186/s12951-020-00597-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
75 Chilla SNM, Laurent S, Vander Elst L, Muller RN. Synthesis and characterization of a new lanthanide based MRI contrast agent, potential and versatile tracer for multimodal imaging. Tetrahedron 2014;70:5450-4. [DOI: 10.1016/j.tet.2014.06.126] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
76 Carniato F, Thangavel K, Tei L, Botta M. Structure and dynamics of the hydration shells of citrate-coated GdF3 nanoparticles. J Mater Chem B 2013;1:2442. [DOI: 10.1039/c3tb20174k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
77 Peng Y, Ye C, Yan R, Lei Y, Ye D, Hong H, Cai T. Activatable Core-Shell Metallofullerene: An Efficient Nanoplatform for Bimodal Sensing of Glutathione. ACS Appl Mater Interfaces 2019;11:46637-44. [PMID: 31747242 DOI: 10.1021/acsami.9b18807] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
78 Nejadnik H, Castillo R, Daldrup-Link HE. Magnetic resonance imaging and tracking of stem cells. Methods Mol Biol 2013;1052:167-76. [PMID: 23743862 DOI: 10.1007/7651_2013_16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
79 McLeod SM, Robison L, Parigi G, Olszewski A, Drout RJ, Gong X, Islamoglu T, Luchinat C, Farha OK, Meade TJ. Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal-Organic Frameworks. ACS Appl Mater Interfaces 2020;12:41157-66. [PMID: 32852198 DOI: 10.1021/acsami.0c13571] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
80 Ceulemans M, Nuyts K, De Borggraeve W, Parac-vogt T. Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics 2015;3:516-33. [DOI: 10.3390/inorganics3040516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
81 Boulay A, Deraeve C, Vander Elst L, Leygue N, Maury O, Laurent S, Muller RN, Mestre-voegtlé B, Picard C. Terpyridine-Based Heteroditopic Ligand for Ru II Ln 3III Metallostar Architectures (Ln = Gd, Eu, Nd, Yb) with MRI/Optical or Dual-Optical Responses. Inorg Chem 2015;54:1414-25. [DOI: 10.1021/ic502342x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
82 Liu T, Qian Y, Hu X, Ge Z, Liu S. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. J Mater Chem 2012;22:5020. [DOI: 10.1039/c2jm15092a] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 5.7] [Reference Citation Analysis]
83 Cheng W, Ganesh T, Martinez F, Lam J, Yoon H, Macgregor RB, Scholl TJ, Cheng HM, Zhang X. Binding of a dimeric manganese porphyrin to serum albumin: towards a gadolinium-free blood-pool T 1 MRI contrast agent. J Biol Inorg Chem 2014;19:229-35. [DOI: 10.1007/s00775-013-1073-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
84 Bennett KM, Jo J, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews 2014;74:75-94. [DOI: 10.1016/j.addr.2014.04.007] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 6.4] [Reference Citation Analysis]
85 Miyake Y, Kimura Y, Orito N, Imai H, Matsuda T, Toshimitsu A, Kondo T. Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups as highly sensitive MRI contrast agents. Tetrahedron 2015;71:4438-44. [DOI: 10.1016/j.tet.2015.04.050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Harris M, Carron S, Vander Elst L, Laurent S, Parac-vogt TN. Magnetofluorescent Nanoaggregates Incorporating Terbium(III) Complexes as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging: Magnetofluorescent Nanoaggregates Incorporating Terbium(III) Complexes. Eur J Inorg Chem 2015;2015:4572-8. [DOI: 10.1002/ejic.201500310] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
87 Vitaliano GD, Vitaliano F, Rios JD, Renshaw PF, Teicher MH. New clathrin-based nanoplatforms for magnetic resonance imaging. PLoS One 2012;7:e35821. [PMID: 22563470 DOI: 10.1371/journal.pone.0035821] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
88 Nwe K, Bryant LH Jr, Brechbiel MW. Poly(amidoamine) dendrimer based MRI contrast agents exhibiting enhanced relaxivities derived via metal preligation techniques. Bioconjug Chem 2010;21:1014-7. [PMID: 20462240 DOI: 10.1021/bc1000802] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
89 Luo N, Tian X, Xiao J, Hu W, Yang C, Li L, Chen D. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol. Journal of Applied Physics 2013;113:164306. [DOI: 10.1063/1.4803035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
90 Kuda-Wedagedara AN, Allen MJ. Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 2014;139:4401-10. [PMID: 25054827 DOI: 10.1039/c4an00990h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
91 Samuel R, Girard E, Chagnon G, Dejean S, Favier D, Coudane J, Nottelet B. Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devices. RSC Adv 2015;5:84125-33. [DOI: 10.1039/c5ra19488a] [Cited by in Crossref: 16] [Article Influence: 2.7] [Reference Citation Analysis]
92 Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013;11 Suppl 1:S6. [PMID: 24564841 DOI: 10.1186/1477-3155-11-S1-S6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
93 Wan C, Zhan Y, Xue R, Wu Y, Li X, Pei F. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn Reson Imaging 2017;44:15-25. [PMID: 28095303 DOI: 10.1016/j.mri.2017.01.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
94 Debroye E, Parac-vogt TN. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem Soc Rev 2014;43:8178-92. [DOI: 10.1039/c4cs00201f] [Cited by in Crossref: 117] [Cited by in F6Publishing: 11] [Article Influence: 16.7] [Reference Citation Analysis]
95 Vivero-Escoto JL, Huxford-Phillips RC, Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 2012;41:2673-85. [PMID: 22234515 DOI: 10.1039/c2cs15229k] [Cited by in Crossref: 292] [Cited by in F6Publishing: 249] [Article Influence: 32.4] [Reference Citation Analysis]
96 Kuźnik N, Tomczyk MM. Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein J Nanotechnol 2016;7:1086-103. [PMID: 27547627 DOI: 10.3762/bjnano.7.102] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
97 Ornelas C. Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations. Macromol Chem Phys 2016;217:149-74. [DOI: 10.1002/macp.201500393] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
98 Menichetti L, De Marchi D, Calucci L, Ciofani G, Menciassi A, Forte C. Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3 T. Appl Radiat Isot 2011;69:1725-7. [PMID: 21398132 DOI: 10.1016/j.apradiso.2011.02.032] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
99 Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media Mol Imaging 2019;2019:1845637. [PMID: 31191182 DOI: 10.1155/2019/1845637] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 19.5] [Reference Citation Analysis]
100 Anishur Rahman ATM, Majewski P, Vasilev K. Gd 2 O 3 nanoparticles: size-dependent nuclear magnetic resonance: SIZE-DEPENDENT NUCLEAR MAGNETIC RESONANCE. Contrast Media Mol Imaging 2013;8:92-5. [DOI: 10.1002/cmmi.1481] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
101 Aiertza MK, Odriozola I, Cabañero G, Grande H, Loinaz I. Single-chain polymer nanoparticles. Cell Mol Life Sci 2012;69:337-46. [DOI: 10.1007/s00018-011-0852-x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 81] [Article Influence: 9.6] [Reference Citation Analysis]
102 Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Materials Letters 2018;212:45-50. [DOI: 10.1016/j.matlet.2017.10.068] [Cited by in Crossref: 50] [Cited by in F6Publishing: 29] [Article Influence: 16.7] [Reference Citation Analysis]
103 Zhou Z, Wu X, Kresak A, Griswold M, Lu ZR. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials 2013;34:7683-93. [PMID: 23863450 DOI: 10.1016/j.biomaterials.2013.06.057] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 6.4] [Reference Citation Analysis]
104 Hu J, Qian Y, Wang X, Liu T, Liu S. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Langmuir 2012;28:2073-82. [PMID: 22047551 DOI: 10.1021/la203992q] [Cited by in Crossref: 101] [Cited by in F6Publishing: 88] [Article Influence: 10.1] [Reference Citation Analysis]
105 Tang X, Gong X, Li A, Lin H, Peng C, Zhang X, Chen X, Gao J. Cascaded Multiresponsive Self-Assembled 19 F MRI Nanoprobes with Redox-Triggered Activation and NIR-Induced Amplification. Nano Lett 2020;20:363-71. [DOI: 10.1021/acs.nanolett.9b04016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
106 Yamada H, Hasegawa Y, Imai H, Takayama Y, Sugihara F, Matsuda T, Tochio H, Shirakawa M, Sando S, Kimura Y, Toshimitsu A, Aoyama Y, Kondo T. Magnetic Resonance Imaging of Tumor with a Self-Traceable Phosphorylcholine Polymer. J Am Chem Soc 2015;137:799-806. [DOI: 10.1021/ja510479v] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
107 Du H, Shen Y, Liu Y, Han L, Zheng Y, Yan G, Tu Y, Wu J, Guo Q, Zhang Y, Xia X, Lan X, Zhang Y. Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent. Chin J Polym Sci 2015;33:1325-33. [DOI: 10.1007/s10118-015-1681-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
108 He L, Wu D, Tong M. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media. Water Research 2019;161:364-71. [DOI: 10.1016/j.watres.2019.06.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
109 Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X. T1T2 Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents. ACS Nano 2017;11:5227-32. [DOI: 10.1021/acsnano.7b03075] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 14.8] [Reference Citation Analysis]
110 Xue S, Qiao J, Pu F, Cameron M, Yang JJ. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:163-79. [PMID: 23335551 DOI: 10.1002/wnan.1205] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
111 Randolph LM, LeGuyader CLM, Hahn ME, Andolina CM, Patterson JP, Mattrey RF, Millstone JE, Botta M, Scadeng M, Gianneschi NC. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chem Sci 2016;7:4230-6. [PMID: 30155069 DOI: 10.1039/c6sc00342g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 4.6] [Reference Citation Analysis]
112 Lesniak WG, Boinapally S, Banerjee SR, Behnam Azad B, Foss CA, Shen C, Lisok A, Wharram B, Nimmagadda S, Pomper MG. Evaluation of PSMA-Targeted PAMAM Dendrimer Nanoparticles in a Murine Model of Prostate Cancer. Mol Pharmaceutics 2019;16:2590-604. [DOI: 10.1021/acs.molpharmaceut.9b00181] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
113 Ye M, Qian Y, Shen Y, Hu H, Sui M, Tang J. Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents. J Mater Chem 2012;22:14369. [DOI: 10.1039/c2jm32211k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
114 Hu X, Liu G, Li Y, Wang X, Liu S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc 2015;137:362-8. [PMID: 25495130 DOI: 10.1021/ja5105848] [Cited by in Crossref: 236] [Cited by in F6Publishing: 225] [Article Influence: 33.7] [Reference Citation Analysis]
115 Thirunarayanan A, Raja S, Mohanraj G, Rajakumar P. Synthesis of chiral core based triazole dendrimers with m-terphenyl surface unit and their antibacterial studies. RSC Adv 2014;4:41778-83. [DOI: 10.1039/c4ra04967e] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
116 Wu Z, Huang J, Yan Y. Electrostatic Polyion Micelles with Fluorescence and MRI Dual Functions. Langmuir 2015;31:7926-33. [DOI: 10.1021/acs.langmuir.5b01516] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
117 Besenius P, van den Hout KP, Albers HMHG, de Greef TFA, Olijve LLC, Hermans TM, de Waal BFM, Bomans PHH, Sommerdijk NAJM, Portale G, Palmans ARA, van Genderen MHP, Vekemans JAJM, Meijer EW. Controlled Supramolecular Oligomerization of C3-Symmetrical Molecules in Water: The Impact of Hydrophobic Shielding. Chem Eur J 2011;17:5193-203. [DOI: 10.1002/chem.201002976] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.4] [Reference Citation Analysis]
118 Lu F, Wang M, Li N, Tang B. Polyoxometalate-Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chemistry 2021;27:6422-34. [PMID: 33314442 DOI: 10.1002/chem.202004500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Zhang C, Sun W, Wang Y, Xu F, Qu J, Xia J, Shen M, Shi X. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Appl Mater Interfaces 2020;12:9107-17. [DOI: 10.1021/acsami.9b23413] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 28.0] [Reference Citation Analysis]
120 Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020;25:E5072. [PMID: 33139643 DOI: 10.3390/molecules25215072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
121 Shi S, Chen F, Cai W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine (Lond) 2013;8:2027-39. [PMID: 24279491 DOI: 10.2217/nnm.13.177] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 10.0] [Reference Citation Analysis]
122 Brooks R, Du Z, Borlace G, Brooks D, Plush S. Synthesis and Characterisation of First Generation Luminescent Lanthanide Complexes Suitable for Being Adapted for Uptake via the Mannose Receptor. Journal of Inorganic Chemistry 2013;2013:1-8. [DOI: 10.1155/2013/498598] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
123 Li Y, Hu X, Ding D, Zou Y, Xu Y, Wang X, Zhang Y, Chen L, Chen Z, Tan W. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat Commun 2017;8:15653. [PMID: 28643777 DOI: 10.1038/ncomms15653] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
124 Chen T, Öçsoy I, Yuan Q, Wang R, You M, Zhao Z, Song E, Zhang X, Tan W. One-step facile surface engineering of hydrophobic nanocrystals with designer molecular recognition. J Am Chem Soc 2012;134:13164-7. [PMID: 22793667 DOI: 10.1021/ja304115q] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
125 Sun L, Li X, Wei X, Luo Q, Guan P, Wu M, Zhu H, Luo K, Gong Q. Stimuli-Responsive Biodegradable Hyperbranched Polymer–Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents. ACS Appl Mater Interfaces 2016;8:10499-512. [DOI: 10.1021/acsami.6b00980] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
126 Lallana E, Fernandez-trillo F, Sousa-herves A, Riguera R, Fernandez-megia E. Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery. Pharm Res 2012;29:902-21. [DOI: 10.1007/s11095-012-0683-y] [Cited by in Crossref: 90] [Cited by in F6Publishing: 72] [Article Influence: 10.0] [Reference Citation Analysis]
127 Linscheid MW. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side. Mass Spectrom Rev 2019;38:169-86. [PMID: 29603315 DOI: 10.1002/mas.21567] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
128 Schlick KH, Morgan JR, Weiel JJ, Kelsey MS, Cloninger MJ. Clusters of ligands on dendrimer surfaces. Bioorg Med Chem Lett 2011;21:5078-83. [PMID: 21524579 DOI: 10.1016/j.bmcl.2011.03.100] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
129 Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018;8:3284-307. [PMID: 29930730 DOI: 10.7150/thno.25220] [Cited by in Crossref: 121] [Cited by in F6Publishing: 88] [Article Influence: 40.3] [Reference Citation Analysis]
130 Termsarasab U, Cho HJ, Moon HT, Park JH, Yoon IS, Kim DD. Self-assembled magnetic resonance imaging nanoprobes based on arachidyl chitosan for cancer diagnosis. Colloids Surf B Biointerfaces 2013;109:280-6. [PMID: 23665478 DOI: 10.1016/j.colsurfb.2013.03.058] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
131 Issa B. Reduction of T2 Relaxation Rates due to Large Volume Fractions of Magnetic Nanoparticles for All Motional Regimes. Applied Sciences 2018;8:101. [DOI: 10.3390/app8010101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
132 Jacobson KA. GPCR ligand-dendrimer (GLiDe) conjugates: future smart drugs? Trends Pharmacol Sci 2010;31:575-9. [PMID: 20961625 DOI: 10.1016/j.tips.2010.09.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
133 Ye M, Qian Y, Tang J, Hu H, Sui M, Shen Y. Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. J Control Release 2013;169:239-45. [PMID: 23403397 DOI: 10.1016/j.jconrel.2013.01.034] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.8] [Reference Citation Analysis]
134 Chen F, Cai W, Hong H. Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy. In: Cai W, editor. Engineering in Translational Medicine. London: Springer; 2014. pp. 611-40. [DOI: 10.1007/978-1-4471-4372-7_23] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
135 Luo N, Tian X, Yang C, Xiao J, Hu W, Chen D, Li L. Ligand-free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging. Phys Chem Chem Phys 2013;15:12235. [DOI: 10.1039/c3cp51530c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
136 Fuchs AV, Gemmell AC, Thurecht KJ. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem 2015;6:868-80. [DOI: 10.1039/c4py01311e] [Cited by in Crossref: 20] [Article Influence: 3.3] [Reference Citation Analysis]
137 Sun X, Xu J, Tang J, Sui M, Shen Y. Folate-targeted optical and magnetic resonance dualmodality PCL-b-PEG micelles for tumor imaging. Chin J Polym Sci 2011;29:427-30. [DOI: 10.1007/s10118-011-1057-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
138 Frangville C, Li Y, Billotey C, Talham DR, Taleb J, Roux P, Marty J, Mingotaud C. Assembly of Double-Hydrophilic Block Copolymers Triggered by Gadolinium Ions: New Colloidal MRI Contrast Agents. Nano Lett 2016;16:4069-73. [DOI: 10.1021/acs.nanolett.6b00664] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 8.6] [Reference Citation Analysis]
139 Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Gulbakan B, Tan W. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 2011;3:546-56. [PMID: 21109879 DOI: 10.1039/c0nr00646g] [Cited by in Crossref: 89] [Cited by in F6Publishing: 23] [Article Influence: 8.1] [Reference Citation Analysis]
140 Kim YS, Zhou Y, Bryant H Jr, Milenic DE, Baidoo KE, Lewis BK, Frank JA, Brechbiel MW. Synthesis and characterization of gadolinium-Peptidomimetic complex as an αvβ3 integrin targeted MR contrast agent. Bioorg Med Chem Lett 2015;25:2056-9. [PMID: 25870133 DOI: 10.1016/j.bmcl.2015.03.092] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
141 Zhang Y, Zhang H, Li B, Zhang H, Tan B, Deng Z. Cell-assembled (Gd-DOTA)i-triphenylphosphonium (TPP) nanoclusters as a T2 contrast agent reveal in vivo fates of stem cell transplants. Nano Res 2018;11:1625-41. [DOI: 10.1007/s12274-017-1778-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
142 Sousa F, Sanavio B, Saccani A, Tang Y, Zucca I, Carney TM, Mastropietro A, Jacob Silva PH, Carney RP, Schenk K, Omrani AO, Huang P, Yang L, Rønnow HM, Stellacci F, Krol S. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T 2 Contrast Agent. Bioconjugate Chem 2017;28:161-70. [DOI: 10.1021/acs.bioconjchem.6b00577] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
143 Phukan B, Patel AB, Mukherjee C. A water-soluble and water-coordinated Mn(II) complex: synthesis, characterization and phantom MRI image study. Dalton Trans 2015;44:12990-4. [PMID: 26135518 DOI: 10.1039/c5dt01781e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 3.6] [Reference Citation Analysis]
144 Li B, Gong T, Xu N, Cui F, Yuan B, Yuan Q, Sun H, Wang L, Liu J. Improved Stability and Photothermal Performance of Polydopamine-Modified Fe3 O4 Nanocomposites for Highly Efficient Magnetic Resonance Imaging-Guided Photothermal Therapy. Small 2020;16:e2003969. [PMID: 33053265 DOI: 10.1002/smll.202003969] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
145 Jo J, Lin X, Nakahara T, Aoki I, Saga T, Tabata Y. Preparation of Polymer-Based Magnetic Resonance Imaging Contrast Agent to Visualize Therapeutic Angiogenesis. Tissue Engineering Part A 2013;19:30-9. [DOI: 10.1089/ten.tea.2012.0131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
146 Park JA, Kim JY, Kim HK, Lee W, Lim SM, Chang Y, Kim TJ, Kim KM. Heteronuclear Gd-(99m)Tc Complex of DTPA-Bis(histidylamide) Conjugate as a Bimodal MR/SPECT Imaging Probe. ACS Med Chem Lett 2012;3:299-302. [PMID: 24900467 DOI: 10.1021/ml200285p] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
147 Suárez-García S, Arias-Ramos N, Frias C, Candiota AP, Arús C, Lorenzo J, Ruiz-Molina D, Novio F. Dual T1/ T2 Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS Appl Mater Interfaces 2018;10:38819-32. [PMID: 30351897 DOI: 10.1021/acsami.8b15594] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 8.7] [Reference Citation Analysis]
148 Vivero-Escoto JL, Huang YT. Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 2011;12:3888-927. [PMID: 21747714 DOI: 10.3390/ijms12063888] [Cited by in Crossref: 66] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
149 Menelaou M, Georgoula K, Simeonidis K, Dendrinou-samara C. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia. Dalton Trans 2014;43:3626. [DOI: 10.1039/c3dt52860j] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 7.1] [Reference Citation Analysis]
150 Barlas FB, Demir B, Guler E, Senisik AM, Arican HA, Unak P, Timur S. Multimodal theranostic assemblies: double encapsulation of protoporphyrine-IX/Gd 3+ in niosomes. RSC Adv 2016;6:30217-25. [DOI: 10.1039/c5ra26737d] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
151 Vinš P, Vermachová M, Drašar P, del Barrio M, Jarne C, Cebolla VL, de Cózar A, Zangi R, Cossío FP. Size and branching effects on the fluorescence of benzylic dendrimers possessing one apigenin fluorophore at the core. Tetrahedron 2013;69:10361-8. [DOI: 10.1016/j.tet.2013.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
152 Xu K, Xu N, Zhu Y, Zhang M, Tang W, Ding Y, Hu A. Co‐Assembly of Gd(III)‐Based Metallosurfactant and Conjugated Polymer Nanoparticles in Organosilica Cross‐Linked Block Copolymer Micelles for Highly Efficient MRI and Fluorescent Bimodal Imaging. Part Part Syst Charact 2020;37:2000044. [DOI: 10.1002/ppsc.202000044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Lesniak WG, Oskolkov N, Song X, Lal B, Yang X, Pomper M, Laterra J, Nimmagadda S, McMahon MT. Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. Nano Lett 2016;16:2248-53. [PMID: 26910126 DOI: 10.1021/acs.nanolett.5b04517] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
154 Pinho SLC, Sereno J, Abrunhosa AJ, Delville M, Rocha J, Carlos LD, Geraldes CFGC. Gd- and Eu-Loaded Iron Oxide@Silica Core–Shell Nanocomposites as Trimodal Contrast Agents for Magnetic Resonance Imaging and Optical Imaging. Inorg Chem 2019;58:16618-28. [DOI: 10.1021/acs.inorgchem.9b02655] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
155 Chai W, Wang S, Zhao H, Liu G, Fischer K, Li H, Wu L, Schmidt M. Hybrid Assemblies Based on a Gadolinium-Containing Polyoxometalate and a Cationic Polymer with Spermine Side Chains for Enhanced MRI Contrast Agents. Chem Eur J 2013;19:13317-21. [DOI: 10.1002/chem.201302618] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
156 Patra D, Mukherjee S, Chakraborty I, Dash TK, Senapati S, Bhattacharyya R, Shunmugam R. Iron(III) Coordinated Polymeric Nanomaterial: A Next-Generation Theranostic Agent for High-Resolution T 1 -Weighted Magnetic Resonance Imaging and Anticancer Drug Delivery. ACS Biomater Sci Eng 2018. [DOI: 10.1021/acsbiomaterials.8b00294] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
157 Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS Nano 2021;15:3079-97. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
158 Wang L, Li C. pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment. J Mater Chem 2011;21:15862. [DOI: 10.1039/c1jm12072g] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
159 Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018;6:210-35. [DOI: 10.1039/c7tb02239e] [Cited by in Crossref: 47] [Cited by in F6Publishing: 6] [Article Influence: 15.7] [Reference Citation Analysis]
160 Giovenzana GB, Negri R, Rolla GA, Tei L. Gd-Aminoethyl-DO3A Complexes: A Novel Class of pH-Sensitive MRI Contrast Agents. Eur J Inorg Chem 2012;2012:2035-9. [DOI: 10.1002/ejic.201101296] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
161 Culver KS, Shin YJ, Rotz MW, Meade TJ, Hersam MC, Odom TW. Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents. J Phys Chem C Nanomater Interfaces 2016;120:22103-9. [PMID: 28008338 DOI: 10.1021/acs.jpcc.6b08362] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
162 Bonnet CS, Tóth É. MRI Contrast Agents. In: Storr T, editor. Ligand Design in Medicinal Inorganic Chemistry. Chichester: John Wiley & Sons, Ltd; 2014. pp. 321-54. [DOI: 10.1002/9781118697191.ch12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
163 Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 2011;40:173-90. [DOI: 10.1039/b901839p] [Cited by in Crossref: 513] [Cited by in F6Publishing: 83] [Article Influence: 51.3] [Reference Citation Analysis]
164 Wang Y, Zhou S, Kong D, Yang H, Chai W, Kortz U, Wu L. Self-assembly and alterable relaxivity of an organic cation-encapsulated gadolinium-containing polyoxometalate. Dalton Trans 2012;41:10052. [DOI: 10.1039/c2dt30641g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
165 Garofalo A, Parat A, Bordeianu C, Ghobril C, Kueny-stotz M, Walter A, Jouhannaud J, Begin-colin S, Felder-flesch D. Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles. New J Chem 2014;38:5226-39. [DOI: 10.1039/c4nj00654b] [Cited by in Crossref: 24] [Article Influence: 3.4] [Reference Citation Analysis]
166 Novoa-carballal R, Riguera R, Fernandez-megia E. Chitosan Copolymers for Biopharmaceuticals. In: Sarmento B, das Neves J, editors. Chitosan-Based Systems for Biopharmaceuticals. Chichester: John Wiley & Sons, Ltd; 2012. pp. 333-80. [DOI: 10.1002/9781119962977.ch19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
167 Gan S, Lin Y, Feng Y, Shui L, Li H, Zhou G. Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics. Int J Nanomedicine 2018;13:4263-81. [PMID: 30087559 DOI: 10.2147/IJN.S164817] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
168 Singh AK. Structure, Synthesis, and Application of Nanoparticles. Engineered Nanoparticles. Elsevier; 2016. pp. 19-76. [DOI: 10.1016/b978-0-12-801406-6.00002-9] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
169 Guo C, Hu J, Bains A, Pan D, Luo K, Li N, Gu Z. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. J Mater Chem B 2016;4:2322-31. [DOI: 10.1039/c5tb02709h] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 4.2] [Reference Citation Analysis]
170 Li J, Hong CY, Wu SX, Liang H, Wang LP, Huang G, Chen X, Yang HH, Shangguan D, Tan W. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures. J Am Chem Soc 2015;137:11210-3. [PMID: 26302208 DOI: 10.1021/jacs.5b05650] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 10.5] [Reference Citation Analysis]
171 Yamada H, Hasegawa Y, Suzuki Y, Imai H, Matsuda T, Kimura Y, Toshimitsu A, Aoyama Y, Kondo T. Magnetic resonance imaging of tumor with a self-traceable polymer conjugated with an antibody fragment. Bioorg Med Chem Lett 2015;25:2675-8. [PMID: 25958246 DOI: 10.1016/j.bmcl.2015.04.072] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
172 Cao Y, Liu M, Zhang K, Dong J, Zu G, Chen Y, Zhang T, Xiong D, Pei R. Preparation of linear poly(glycerol) as a T 1 contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem B 2016;4:6716-25. [DOI: 10.1039/c6tb01514j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
173 Ling D, Park W, Park S, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T. Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors. J Am Chem Soc 2014;136:5647-55. [DOI: 10.1021/ja4108287] [Cited by in Crossref: 334] [Cited by in F6Publishing: 315] [Article Influence: 47.7] [Reference Citation Analysis]
174 Soleimani A, Martínez F, Economopoulos V, Foster PJ, Scholl TJ, Gillies ER. Polymer cross-linking: a nanogel approach to enhancing the relaxivity of MRI contrast agents. J Mater Chem B 2013;1:1027-34. [DOI: 10.1039/c2tb00352j] [Cited by in Crossref: 34] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
175 Barreto JA, O’malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv Mater 2011;23:H18-40. [DOI: 10.1002/adma.201100140] [Cited by in Crossref: 664] [Cited by in F6Publishing: 603] [Article Influence: 66.4] [Reference Citation Analysis]
176 Wang L, Lin H, Ma L, Jin J, Shen T, Wei R, Wang X, Ai H, Chen Z, Gao J. Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T 1 –T 2 dual-mode contrast agents for accurate liver tumor imaging. Nanoscale 2017;9:4516-23. [DOI: 10.1039/c7nr01134b] [Cited by in Crossref: 34] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
177 Simão T, Chevallier P, Lagueux J, Côté M, Rehbock C, Barcikowski S, Fortin M, Guay D. Laser-synthesized ligand-free Au nanoparticles for contrast agent applications in computed tomography and magnetic resonance imaging. J Mater Chem B 2016;4:6413-27. [DOI: 10.1039/c6tb01162d] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
178 Peller M, Böll K, Zimpel A, Wuttke S. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front 2018;5:1760-79. [DOI: 10.1039/c8qi00149a] [Cited by in Crossref: 59] [Cited by in F6Publishing: 2] [Article Influence: 19.7] [Reference Citation Analysis]
179 Sun W, Thies S, Zhang J, Peng C, Tang G, Shen M, Pich A, Shi X. Gadolinium-Loaded Poly(N-vinylcaprolactam) Nanogels: Synthesis, Characterization, and Application for Enhanced Tumor MR Imaging. ACS Appl Mater Interfaces 2017;9:3411-8. [PMID: 28067034 DOI: 10.1021/acsami.6b14219] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 9.8] [Reference Citation Analysis]
180 Krisilov AV, Nechaev IV, Chernov VE, Zon BA. Spin-Dependent Vibrational Spectra of the Gd@C60 Endohedral Metallofullerene. Opt Spectrosc 2019;127:815-9. [DOI: 10.1134/s0030400x19110171] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
181 Fuentes-paniagua E, Peña-gonzález CE, Galán M, Gómez R, de la Mata FJ, Sánchez-nieves J. Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics 2013;32:1789-96. [DOI: 10.1021/om301217g] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
182 Vivero-Escoto JL, Rieter WJ, Lau H, Huxford-Phillips RC, Lin W. Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging. Small 2013;9:3523-31. [PMID: 23613450 DOI: 10.1002/smll.201300198] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 6.5] [Reference Citation Analysis]
183 Yang L, Wang L, Huang G, Zhang X, Chen L, Li A, Gao J, Zhou Z, Su L, Yang H, Song J. Improving the sensitivity of T 1 contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics 2021;11:6966-82. [PMID: 34093865 DOI: 10.7150/thno.59096] [Reference Citation Analysis]
184 Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 2015;44:4645-71. [DOI: 10.1039/c4cs00270a] [Cited by in Crossref: 93] [Cited by in F6Publishing: 17] [Article Influence: 15.5] [Reference Citation Analysis]
185 Esmaeilpour M, Javidi J, Dehghani F, Zahmatkesh S. One-pot synthesis of multisubstituted imidazoles catalyzed by Dendrimer-PWAn nanoparticles under solvent-free conditions and ultrasonic irradiation. Res Chem Intermed 2017;43:163-85. [DOI: 10.1007/s11164-016-2613-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
186 Zhen M, Zheng J, Ye L, Li S, Jin C, Li K, Qiu D, Han H, Shu C, Yang Y, Wang C. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces 2012;4:3724-9. [PMID: 22704586 DOI: 10.1021/am300817z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
187 Wigger H, Zimmermann T, Pade C. Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. Environ Syst Decis 2015;35:110-28. [DOI: 10.1007/s10669-014-9530-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
188 Esmaeilpour M, Javidi J, Dehghani F. Preparation, characterization and catalytic activity of dendrimer-encapsulated phosphotungstic acid nanoparticles immobilized on nanosilica for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free or sonochemical conditions. J IRAN CHEM SOC 2016;13:695-714. [DOI: 10.1007/s13738-015-0782-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
189 Maciejewska BM, Warowicka A, Baranowska-korczyc A, Załęski K, Zalewski T, Kozioł KK, Jurga S. Magnetic and hydrophilic MWCNT/Fe composites as potential T2-weighted MRI contrast agents. Carbon 2015;94:1012-20. [DOI: 10.1016/j.carbon.2015.07.091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
190 Bruckman MA, Yu X, Steinmetz NF. Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T(1) shortening. Nanotechnology 2013;24:462001. [PMID: 24158750 DOI: 10.1088/0957-4484/24/46/462001] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
191 De León-Rodríguez LM, Lubag A, Udugamasooriya DG, Proneth B, Brekken RA, Sun X, Kodadek T, Dean Sherry A. MRI detection of VEGFR2 in vivo using a low molecular weight peptoid-(Gd)8-dendron for targeting. J Am Chem Soc 2010;132:12829-31. [PMID: 20795620 DOI: 10.1021/ja105563a] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
192 Carvalho A, Domingues I, Gonçalves MC. Core–shell superparamagnetic nanoparticles with interesting properties as contrast agents for MRI. Materials Chemistry and Physics 2015;168:42-9. [DOI: 10.1016/j.matchemphys.2015.10.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
193 Zairov R, Khakimullina G, Podyachev S, Nizameev I, Safiullin G, Amirov R, Vomiero A, Mustafina A. Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep 2017;7:14010. [PMID: 29070882 DOI: 10.1038/s41598-017-14409-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
194 El Habnouni S, Nottelet B, Darcos V, Porsio B, Lemaire L, Franconi F, Garric X, Coudane J. MRI-Visible Poly(ε-caprolactone) with Controlled Contrast Agent Ratios for Enhanced Visualization in Temporary Imaging Applications. Biomacromolecules 2013;14:3626-34. [DOI: 10.1021/bm400978a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
195 Cao L, Li B, Yi P, Zhang H, Dai J, Tan B, Deng Z. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides. Biomaterials 2014;35:4168-74. [DOI: 10.1016/j.biomaterials.2014.01.073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
196 Vorobiev V, Adriouach S, Crowe LA, Lenglet S, Thomas A, Chauvin AS, Allémann E. Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. Eur J Pharm Biopharm 2021;158:347-58. [PMID: 33271302 DOI: 10.1016/j.ejpb.2020.11.017] [Reference Citation Analysis]
197 Huang G, Hu J, Zhang H, Zhou Z, Chi X, Gao J. Highly magnetic iron carbide nanoparticles as effective T(2) contrast agents. Nanoscale 2014;6:726-30. [PMID: 24287667 DOI: 10.1039/c3nr04691e] [Cited by in Crossref: 59] [Cited by in F6Publishing: 7] [Article Influence: 8.4] [Reference Citation Analysis]
198 Li T, Qian Y, Ye M, Tang J, Hu H, Shen Y. Synthesis and Properties of a Biodegradable Dendritic Magnetic Resonance Imaging Contrast Agent. Chin J Chem 2014;32:91-6. [DOI: 10.1002/cjoc.201300889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
199 Basuki JS, Duong HT, Macmillan A, Erlich RB, Esser L, Akerfeldt MC, Whan RM, Kavallaris M, Boyer C, Davis TP. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 2013;7:10175-89. [PMID: 24131276 DOI: 10.1021/nn404407g] [Cited by in Crossref: 126] [Cited by in F6Publishing: 107] [Article Influence: 15.8] [Reference Citation Analysis]
200 Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH, Castaneda R, Hazard FK, Tong L, Lenkov OD, Felsher DW, Rao J, Daldrup-Link HE. Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 2014;10:566-75, 417. [PMID: 24038954 DOI: 10.1002/smll.201301456] [Cited by in Crossref: 89] [Cited by in F6Publishing: 80] [Article Influence: 11.1] [Reference Citation Analysis]
201 Lamanna G, Kueny-stotz M, Mamlouk-chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-colin S, Felder-flesch D. Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 2011;32:8562-73. [DOI: 10.1016/j.biomaterials.2011.07.026] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 7.0] [Reference Citation Analysis]
202 Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011;40:2673-703. [PMID: 21286593 DOI: 10.1039/c0cs00097c] [Cited by in Crossref: 377] [Cited by in F6Publishing: 318] [Article Influence: 37.7] [Reference Citation Analysis]
203 Xiong R, Cheng L, Tian Y, Tang W, Xu K, Yuan Y, Hu A. Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents. RSC Adv 2016;6:28063-8. [DOI: 10.1039/c6ra03589b] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
204 Vithanarachchi SM, Allen MJ. Strategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging. Curr Mol Imaging 2012;1:12-25. [PMID: 23316452 DOI: 10.2174/2211555211201010012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
205 Huang Z, Chen Y, Liu D, Lu C, Shen Z, Zhong S, Shi G. Gadolinium-conjugated star-block copolymer polylysine-modified polyethylenimine as high-performance T1 MR imaging blood pool contrast agents. RSC Adv 2018;8:5005-12. [DOI: 10.1039/c7ra08820e] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
206 Lv R, Gai S, Dai Y, Niu N, He F, Yang P. Highly Uniform Hollow GdF 3 Spheres: Controllable Synthesis, Tuned Luminescence, and Drug-Release Properties. ACS Appl Mater Interfaces 2013;5:10806-18. [DOI: 10.1021/am4041652] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 6.1] [Reference Citation Analysis]
207 Angelovski G. What We Can Really Do with Bioresponsive MRI Contrast Agents. Angew Chem Int Ed 2016;55:7038-46. [DOI: 10.1002/anie.201510956] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 11.2] [Reference Citation Analysis]
208 Atabaev TS, Lee JH, Han D, Kim H, Hwang Y. Ultrafine PEG-capped gadolinia nanoparticles: cytotoxicity and potential biomedical applications for MRI and luminescent imaging. RSC Adv 2014;4:34343-9. [DOI: 10.1039/c4ra03560g] [Cited by in Crossref: 27] [Article Influence: 3.9] [Reference Citation Analysis]
209 Doan B, Crauste-manciet S, Bourgaux C, Dhotel H, Jugé L, Brossard D, Scherman D, Bessodes M, Cuenod C, Mignet N. Lipidic spherulites as magnetic resonance imaging contrast agents. New J Chem 2014;38:5190-7. [DOI: 10.1039/c4nj00571f] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
210 Xu Z, Liu C, Zhao S, Chen S, Zhao Y. Molecular Sensors for NMR-Based Detection. Chem Rev 2019;119:195-230. [DOI: 10.1021/acs.chemrev.8b00202] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
211 Tang J, Sheng Y, Hu H, Shen Y. Macromolecular MRI contrast agents: Structures, properties and applications. Progress in Polymer Science 2013;38:462-502. [DOI: 10.1016/j.progpolymsci.2012.07.001] [Cited by in Crossref: 107] [Cited by in F6Publishing: 72] [Article Influence: 13.4] [Reference Citation Analysis]
212 Craciun I, Gunkel-Grabole G, Belluati A, Palivan CG, Meier W. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine (Lond) 2017;12:811-7. [PMID: 28322116 DOI: 10.2217/nnm-2016-0413] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
213 Lalli D, Ferrauto G, Terreno E, Carniato F, Botta M. Mn(II)-Conjugated silica nanoparticles as potential MRI probes. J Mater Chem B 2021;9:8994-9004. [PMID: 34585711 DOI: 10.1039/d1tb01600h] [Reference Citation Analysis]
214 Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018;57:6932-45. [DOI: 10.1021/acs.inorgchem.8b00598] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
215 Hu J, Xu T, Cheng Y. NMR Insights into Dendrimer-Based Host–Guest Systems. Chem Rev 2012;112:3856-91. [DOI: 10.1021/cr200333h] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 13.2] [Reference Citation Analysis]
216 Miyake Y, Ishikawa S, Kimura Y, Son A, Imai H, Matsuda T, Yamada H, Toshimitsu A, Kondo T. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM. Sensors (Basel) 2015;15:31973-86. [PMID: 26694418 DOI: 10.3390/s151229900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
217 Andreozzi E, Wang P, Valenzuela A, Tu C, Gorin F, Dhenain M, Louie A. Size-Stable Solid Lipid Nanoparticles Loaded with Gd-DOTA for Magnetic Resonance Imaging. Bioconjugate Chem 2013;24:1455-67. [DOI: 10.1021/bc300605f] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
218 Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology 2018;16:52. [PMID: 29890977 DOI: 10.1186/s12951-018-0378-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 12.3] [Reference Citation Analysis]
219 Grogna M, Cloots R, Luxen A, Jérôme C, Passirani C, Lautram N, Desreux J, Detrembleur C. Convenient grafting through approach for the preparation of stealth polymeric blood pool magnetic resonance imaging contrast agents. J Polym Sci A Polym Chem 2011;49:3700-8. [DOI: 10.1002/pola.24805] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
220 Wang M, Gong X, Hu J, Yu Y, Chen Q, Cheng Y. Understanding the Binding Interactions between Dendrimer and 18 Common Amino Acids by NMR Techniques. J Phys Chem B 2011;115:12728-35. [DOI: 10.1021/jp207817f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
221 Zhang G, Zhang R, Melancon MP, Wong K, You J, Huang Q, Bankson J, Liang D, Li C. The degradation and clearance of Poly(N-hydroxypropyl-L-glutamine)-DTPA-Gd as a blood pool MRI contrast agent. Biomaterials 2012;33:5376-83. [PMID: 22541356 DOI: 10.1016/j.biomaterials.2012.03.081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
222 Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013;187:3-63. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
223 Debroye E, Dehaen G, Eliseeva SV, Laurent S, Vander Elst L, Muller RN, Binnemans K, Parac-vogt TN. A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent. Dalton Trans 2012;41:10549. [DOI: 10.1039/c2dt30605k] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
224 Tei L, Gugliotta G, Gambino G, Fekete M, Botta M. Developing High Field MRI Contrast Agents by Tuning the Rotational Dynamics: Bisaqua GdAAZTA-based Dendrimers. Isr J Chem 2017;57:887-95. [DOI: 10.1002/ijch.201700041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
225 Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H, Lin W, Lin W. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small. 2011;7:3519-3528. [PMID: 22069305 DOI: 10.1002/smll.201100521] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 8.2] [Reference Citation Analysis]
226 Kovář D, Malá A, Mlčochová J, Kalina M, Fohlerová Z, Hlaváček A, Farka Z, Skládal P, Starčuk Z, Jiřík R, Slabý O, Hubálek J. Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging. Journal of Nanomaterials 2017;2017:1-8. [DOI: 10.1155/2017/7859289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
227 Belleza OJV, Villaraza AJL. Ion charge density governs selectivity in the formation of metal–Xylenol Orange (M–XO) complexes. Inorganic Chemistry Communications 2014;47:87-92. [DOI: 10.1016/j.inoche.2014.07.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
228 Malkoch M, Malmström E, Nyström A. Dendrimers. Polymer Science: A Comprehensive Reference. Elsevier; 2012. pp. 113-76. [DOI: 10.1016/b978-0-444-53349-4.00162-x] [Cited by in Crossref: 6] [Article Influence: 0.7] [Reference Citation Analysis]
229 Hahn U, Luelf H, Winkler HD, Schalley CA, Vögtle F, De Cola L. Encapsulation of luminescent homoleptic [Ru(dpp)3](2+)-type chromophores within an amphiphilic dendritic environment. Chemistry 2012;18:15424-32. [PMID: 23081803 DOI: 10.1002/chem.201201126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
230 Böll K, Zimpel A, Dietrich O, Wuttke S, Peller M. Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron‐Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. Adv Therap 2020;3:1900126. [DOI: 10.1002/adtp.201900126] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
231 Miao T, Oldinski RA, Liu G, Chen X. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. In: Rai P, Morris SA, editors. Nanotheranostics for Cancer Applications. Cham: Springer International Publishing; 2019. pp. 395-428. [DOI: 10.1007/978-3-030-01775-0_16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
232 Wu X, Li C, Liao S, Li L, Wang T, Su Z, Wang C, Zhao J, Sui C, Lin J. Silica-Encapsulated Gd 3+ -Aggregated Gold Nanoclusters for In Vitro and In Vivo Multimodal Cancer Imaging. Chem Eur J 2014. [DOI: 10.1002/chem.201403202] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
233 Li Y, Duong HTT, Laurent S, Macmillan A, Whan RM, Elst LV, Muller RN, Hu J, Lowe A, Boyer C, Davis TP. Nanoparticles Based on Star Polymers as Theranostic Vectors: Endosomal-Triggered Drug Release Combined with MRI Sensitivity. Adv Healthcare Mater 2015;4:148-56. [DOI: 10.1002/adhm.201400164] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
234 Qin H, Yang S, Xing D. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG 2 [Gd(DTPA)]. Appl Phys Lett 2012;100:033701. [DOI: 10.1063/1.3678022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
235 Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-balard L, Cohen R, Miot-noirault E, Chezal J, Billotey C, Felder-flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015;3:2560-71. [DOI: 10.1039/c5tb00235d] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
236 Zhou Z, Mondjinou Y, Hyun SH, Kulkarni A, Lu ZR, Thompson DH. Gd3+-1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic-2-hydroxypropyl-β-cyclodextrin/Pluronic Polyrotaxane as a Long Circulating High Relaxivity MRI Contrast Agent. ACS Appl Mater Interfaces 2015;7:22272-6. [PMID: 26417911 DOI: 10.1021/acsami.5b05393] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
237 Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015;115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Cited by in Crossref: 654] [Cited by in F6Publishing: 498] [Article Influence: 109.0] [Reference Citation Analysis]
238 Laznickova A, Biricova V, Laznicek M, Hermann P. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Applied Radiation and Isotopes 2014;84:70-7. [DOI: 10.1016/j.apradiso.2013.10.021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
239 Huang Y, Hu H, Li R, Yu B, Xu F. Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers. ACS Appl Mater Interfaces 2016;8:3919-27. [DOI: 10.1021/acsami.5b11016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
240 Granato L, Vander Elst L, Henoumont C, Muller RN, Laurent S. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI. Chem Biodivers 2018;15. [PMID: 29460387 DOI: 10.1002/cbdv.201700487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
241 Abd-el-aziz AS, Agatemor C. Emerging Opportunities in the Biomedical Applications of Dendrimers. J Inorg Organomet Polym 2018;28:369-82. [DOI: 10.1007/s10904-017-0768-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
242 Farashishiko A, Plush SE, Maier KB, Dean Sherry A, Woods M. Crosslinked shells for nano-assembled capsules: a new encapsulation method for smaller Gd3+-loaded capsules with exceedingly high relaxivities. Chem Commun (Camb) 2017;53:6355-8. [PMID: 28555682 DOI: 10.1039/c7cc00123a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
243 Xu M, Guo C, Hu G, Xu S, Wang L. Organic Nanoprobes for Fluorescence and 19 F Magnetic Resonance Dual-Modality Imaging: Organic Nanoprobes for Fluorescence and 19 F Magnetic Resonance Dual-Modality Imaging. Chin J Chem 2018;36:25-30. [DOI: 10.1002/cjoc.201700382] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
244 Phukan B, Malikidogo KP, Bonnet CS, Tóth É, Mondal S, Mukherjee C. A Bishydrated, Eight–Coordinate Gd(III) Complex with Very Fast Water Exchange: Synthesis, Characterization, and Phantom MR Imaging. ChemistrySelect 2018;3:7668-73. [DOI: 10.1002/slct.201801629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
245 Yon M, Billotey C, Marty J. Gadolinium-based contrast agents: From gadolinium complexes to colloidal systems. International Journal of Pharmaceutics 2019;569:118577. [DOI: 10.1016/j.ijpharm.2019.118577] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
246 Xu K, Wang M, Tang W, Ding Y, Hu A. Flash nanoprecipitation with Gd(III)‐based metallosurfactants to fabricate polylactic acid nanoparticles as highly efficient contrast agents for magnetic resonance imaging. Chem Asian J 2020;15:2475-9. [DOI: 10.1002/asia.202000624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
247 Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y. Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS Appl Mater Interfaces 2018;10:4530-9. [PMID: 29336146 DOI: 10.1021/acsami.7b18155] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 14.7] [Reference Citation Analysis]
248 Zhang L, Liu Y, Zhang Q, Li T, Yang M, Yao Q, Xie X, Hu HY. Gadolinium-Labeled Aminoglycoside and Its Potential Application as a Bacteria-Targeting Magnetic Resonance Imaging Contrast Agent. Anal Chem 2018;90:1934-40. [PMID: 29293308 DOI: 10.1021/acs.analchem.7b04029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
249 Li Y, Beija M, Laurent S, Elst LV, Muller RN, Duong HTT, Lowe AB, Davis TP, Boyer C. Macromolecular Ligands for Gadolinium MRI Contrast Agents. Macromolecules 2012;45:4196-204. [DOI: 10.1021/ma300521c] [Cited by in Crossref: 116] [Cited by in F6Publishing: 87] [Article Influence: 12.9] [Reference Citation Analysis]
250 Wang X, Gong J, Tan W, Hu T, Rong R, Gui Z, Nie K, Xu X. Adsorption of proteins on oral Zn2+ doped iron oxide nanoparticles in mouse stomach and in vitro: triggering nanoparticle aggregation. Nanoscale 2020;12:22754-67. [PMID: 33174556 DOI: 10.1039/d0nr06315k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
251 Gao A, Zhang D, Yin X. Near infrared fluorescence-magnetic resonance dual-modal imaging with Cy5-labeled, Gd–Al co-doped mesoporous silica nanoparticles. Anal Methods 2016;8:214-21. [DOI: 10.1039/c5ay02230d] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
252 Liu Q, Chen S, Chen J, Du J. An Asymmetrical Polymer Vesicle Strategy for Significantly Improving T1 MRI Sensitivity and Cancer-Targeted Drug Delivery. Macromolecules 2015;48:739-49. [DOI: 10.1021/ma502255s] [Cited by in Crossref: 80] [Cited by in F6Publishing: 62] [Article Influence: 13.3] [Reference Citation Analysis]
253 Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen T, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2016;116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Cited by in Crossref: 314] [Cited by in F6Publishing: 235] [Article Influence: 52.3] [Reference Citation Analysis]
254 Tu C, Louie AY. Nanoformulations for molecular MRI. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4:448-57. [PMID: 22488901 DOI: 10.1002/wnan.1170] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
255 Karimi A, Denizot B, Passirani C, Hindré F, Roux J, Legras P, Le Jeune J. In vitro and in vivo evaluation of superparamagnetic iron oxide nanoparticles coated by bisphosphonates: The effects of electrical charge and molecule length. European Journal of Pharmaceutical Sciences 2013;49:101-8. [DOI: 10.1016/j.ejps.2013.02.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
256 Mahajan S, Koul V, Choudhary V, Shishodia G, Bharti AC. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 2013;24:015603. [DOI: 10.1088/0957-4484/24/1/015603] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
257 Aparicio-blanco J, Torres-suárez A. Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomaterialia 2018;73:52-63. [DOI: 10.1016/j.actbio.2018.04.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
258 Zhang CJ, Wang CX, Gao ZY, Ke C, Fu LM, Zhang Z, Wang Y, Zhang JP. Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. Rev Sci Instrum 2018;89:085105. [PMID: 30184676 DOI: 10.1063/1.5026852] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
259 Sun W, Zhang J, Zhang C, Wang P, Peng C, Shen M, Shi X. Construction of Hybrid Alginate Nanogels Loaded with Manganese Oxide Nanoparticles for Enhanced Tumor Magnetic Resonance Imaging. ACS Macro Lett 2018;7:137-42. [DOI: 10.1021/acsmacrolett.7b00999] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
260 Rasines B, Sánchez-Nieves J, Maiolo M, Maly M, Chonco L, Jiménez JL, Muñoz-Fernández MÁ, de la Mata FJ, Gómez R. Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Trans 2012;41:12733-48. [PMID: 22968584 DOI: 10.1039/c2dt31099f] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
261 Qiao J, Xue S, Pu F, White N, Jiang J, Liu ZR, Yang JJ. Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 2014;19:259-70. [PMID: 24366655 DOI: 10.1007/s00775-013-1076-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
262 Bañobre-lópez M, Bran C, Rodríguez-abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T 2 -MRI contrast agent. J Mater Chem B 2017;5:3338-47. [DOI: 10.1039/c7tb00574a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
263 Ho L, Hsu C, Ou C, Wang C, Liu T, Hwang L, Lin Y, Chang H. Unibody core–shell smart polymer as a theranostic nanoparticle for drug delivery and MR imaging. Biomaterials 2015;37:436-46. [DOI: 10.1016/j.biomaterials.2014.10.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
264 Warsi MF, Chechik V. Strategies for increasing relaxivity of gold nanoparticle based MRI contrast agents. Phys Chem Chem Phys 2011;13:9812. [DOI: 10.1039/c0cp02508a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
265 Botta M, Tei L. Relaxivity Enhancement in Macromolecular and Nanosized GdIII-Based MRI Contrast Agents. Eur J Inorg Chem 2012;2012:1945-60. [DOI: 10.1002/ejic.201101305] [Cited by in Crossref: 150] [Cited by in F6Publishing: 92] [Article Influence: 16.7] [Reference Citation Analysis]
266 Safaei-Ghomi J, Tavazo M, Mahdavinia GH. Ultrasound promoted one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using dendrimer-attached phosphotungstic acid nanoparticles immobilized on nanosilica. Ultrason Sonochem 2018;40:230-7. [PMID: 28946420 DOI: 10.1016/j.ultsonch.2017.07.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 4.8] [Reference Citation Analysis]
267 Ghobril C, Lamanna G, Kueny-stotz M, Garofalo A, Billotey C, Felder-flesch D. Dendrimers in nuclear medical imaging. New J Chem 2012;36:310-23. [DOI: 10.1039/c1nj20416e] [Cited by in Crossref: 27] [Article Influence: 3.0] [Reference Citation Analysis]
268 Yang C, Padmanabhan P, Gulyás BZ. Gadolinium( iii ) based nanoparticles for T 1 -weighted magnetic resonance imaging probes. RSC Adv 2016;6:60945-66. [DOI: 10.1039/c6ra07782j] [Cited by in Crossref: 27] [Article Influence: 5.4] [Reference Citation Analysis]
269 Fernández-trillo F, Pacheco-torres J, Correa J, Ballesteros P, Lopez-larrubia P, Cerdán S, Riguera R, Fernandez-megia E. Dendritic MRI Contrast Agents: An Efficient Prelabeling Approach Based on CuAAC. Biomacromolecules 2011;12:2902-7. [DOI: 10.1021/bm2004466] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
270 Sousa-Herves A, Novoa-Carballal R, Riguera R, Fernandez-Megia E. GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications. AAPS J 2014;16:948-61. [PMID: 25004824 DOI: 10.1208/s12248-014-9642-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
271 Svitova AL, Popov AA, Dunsch L. Gd-Sc-based mixed-metal nitride cluster fullerenes: mutual influence of the cage and cluster size and the role of scandium in the electronic structure. Inorg Chem 2013;52:3368-80. [PMID: 23469831 DOI: 10.1021/ic400049k] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
272 Carron S, Bloemen M, Vander Elst L, Laurent S, Verbiest T, Parac-Vogt TN. Potential theranostic and multimodal iron oxide nanoparticles decorated with rhenium-bipyridine and -phenanthroline complexes. J Mater Chem B 2015;3:4370-6. [PMID: 32262780 DOI: 10.1039/c5tb00460h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
273 Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM. Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. Magnetic Nanostructured Materials. Elsevier; 2018. pp. 59-116. [DOI: 10.1016/b978-0-12-813904-2.00003-6] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
274 Miyake Y, Kimura Y, Ishikawa S, Tsujita H, Miura H, Narazaki M, Matsuda T, Tabata Y, Yano T, Toshimitsu A, Kondo T. Synthesis and functional evaluation of chiral dendrimer–triamine-coordinated Gd complexes as highly sensitive MRI contrast agents. Tetrahedron Letters 2012;53:4580-3. [DOI: 10.1016/j.tetlet.2012.06.072] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
275 Porsio B, Lemaire L, El Habnouni S, Darcos V, Franconi F, Garric X, Coudane J, Nottelet B. MRI-visible nanoparticles from hydrophobic gadolinium poly(ε-caprolactone) conjugates. Polymer 2015;56:135-40. [DOI: 10.1016/j.polymer.2014.11.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
276 Liu T, Li X, Qian Y, Hu X, Liu S. Multifunctional pH-Disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-Based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials 2012;33:2521-31. [DOI: 10.1016/j.biomaterials.2011.12.013] [Cited by in Crossref: 129] [Cited by in F6Publishing: 116] [Article Influence: 14.3] [Reference Citation Analysis]
277 Nebu J, Anjali Devi J, Aparna R, Abha K, Sony G. Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles–A targeted probe for imaging pancreatic cancer cells. Sensors and Actuators B: Chemical 2018;257:1035-43. [DOI: 10.1016/j.snb.2017.11.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
278 Grillone A, Riva ER, Mondini A, Forte C, Calucci L, Innocenti C, de Julian Fernandez C, Cappello V, Gemmi M, Moscato S, Ronca F, Sacco R, Mattoli V, Ciofani G. Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles. Adv Healthcare Mater 2015;4:1681-90. [DOI: 10.1002/adhm.201500235] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 7.2] [Reference Citation Analysis]
279 Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews 2020;419:213393. [DOI: 10.1016/j.ccr.2020.213393] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
280 Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl Mater Interfaces 2013;5:1722-31. [DOI: 10.1021/am302883m] [Cited by in Crossref: 205] [Cited by in F6Publishing: 159] [Article Influence: 25.6] [Reference Citation Analysis]
281 Sarma M, Chatterjee T, Das SK. A copper–cyclen coordination complex associated with a polyoxometalate anion: Synthesis, crystal structure and electrochemistry of [Cu(cyclen)(MeCN)][W6O19]. Inorganic Chemistry Communications 2010;13:1114-7. [DOI: 10.1016/j.inoche.2010.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
282 Rolla G, De Biasio V, Giovenzana GB, Botta M, Tei L. Supramolecular assemblies based on amphiphilic Mn 2+ -complexes as high relaxivity MRI probes. Dalton Trans 2018;47:10660-70. [DOI: 10.1039/c8dt01250d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
283 Calucci L, Ciofani G, De Marchi D, Forte C, Menciassi A, Menichetti L, Positano V. Boron Nitride Nanotubes as T2 -Weighted MRI Contrast Agents. J Phys Chem Lett 2010;1:2561-5. [DOI: 10.1021/jz100895s] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
284 Gambino G, De Pinto S, Tei L, Cassino C, Arena F, Gianolio E, Botta M. A new ditopic Gd(III) complex functionalized with an adamantyl moiety as a versatile building block for the preparation of supramolecular assemblies. J Biol Inorg Chem 2014;19:133-43. [PMID: 24100595 DOI: 10.1007/s00775-013-1050-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
285 Taabache S, Bertin A. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications. Polymers (Basel) 2017;9:E280. [PMID: 30970958 DOI: 10.3390/polym9070280] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
286 Zu G, Kuang Y, Dong J, Cao Y, Wang K, Liu M, Luo L, Pei R. Multi-arm star-branched polymer as an efficient contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem B 2017;5:5001-8. [DOI: 10.1039/c7tb01202k] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
287 Marasini R, Thanh Nguyen TD, Aryal S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1580. [PMID: 31486295 DOI: 10.1002/wnan.1580] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
288 Wu S, Lin C, Hung Y, Chen W, Chang C, Mou C. PEGylated silica nanoparticles encapsulating multiple magnetite nanocrystals for high-performance microscopic magnetic resonance angiography. J Biomed Mater Res 2011;99B:81-8. [DOI: 10.1002/jbm.b.31874] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
289 Huang WY, Davis JJ. Multimodality and nanoparticles in medical imaging. Dalton Trans 2011;40:6087-103. [PMID: 21409202 DOI: 10.1039/c0dt01656j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 7.0] [Reference Citation Analysis]
290 Takata T. Stimuli-Responsive Molecular and Macromolecular Systems Controlled by Rotaxane Molecular Switches. BCSJ 2019;92:409-26. [DOI: 10.1246/bcsj.20180330] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 11.5] [Reference Citation Analysis]
291 Wan C, Xue R, Zhan Y, Wu Y, Li X, Pei F. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure. OMICS 2017;21:540-9. [PMID: 28934030 DOI: 10.1089/omi.2017.0114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
292 Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014;34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
293 Cao Y, He Y, Mao Z, Kuang Y, Liu M, Zhang Y, Pei R. Synergistic regulation of longitudinal and transverse relaxivity of extremely small iron oxide nanoparticles (ESIONPs) using pH-responsive nanoassemblies. Nanoscale 2020;12:17502-16. [DOI: 10.1039/d0nr04201c] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
294 Frangville C, Gallois M, Li Y, Nguyen HH, Lauth-de Viguerie N, Talham DR, Mingotaud C, Marty J. Hyperbranched polymer mediated size-controlled synthesis of gadolinium phosphate nanoparticles: colloidal properties and particle size-dependence on MRI relaxivity. Nanoscale 2016;8:4252-9. [DOI: 10.1039/c5nr05064b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 3.6] [Reference Citation Analysis]
295 Sun M, Zhang H, Liu B, Liu Y. Construction of a Supramolecular Polymer by Bridged Bis(permethyl-β-cyclodextrin)s with Porphyrins and Its Highly Efficient Magnetic Resonance Imaging. Macromolecules 2013;46:4268-75. [DOI: 10.1021/ma400806s] [Cited by in Crossref: 56] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
296 Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, Liu S. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 2011;32:6595-605. [PMID: 21663960 DOI: 10.1016/j.biomaterials.2011.05.049] [Cited by in Crossref: 224] [Cited by in F6Publishing: 205] [Article Influence: 22.4] [Reference Citation Analysis]
297 Schultz-sikma EA, Meade TJ. Supramolecular Chemistry in Biological Imaging In Vivo. In: Gale PA, Steed JW, editors. Supramolecular Chemistry. Chichester: John Wiley & Sons, Ltd; 2012. [DOI: 10.1002/9780470661345.smc178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
298 Bernsen MR, van Straten M, Kotek G, Warnert EAH, Haeck JC, Ruggiero A, Wielopolski PA, Krestin GP. Computed Tomography and Magnetic Resonance Imaging. Recent Results Cancer Res 2020;216:31-110. [PMID: 32594384 DOI: 10.1007/978-3-030-42618-7_2] [Reference Citation Analysis]
299 Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017;46:10139-76. [DOI: 10.1039/c7dt01916e] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
300 Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011;6:815-35. [PMID: 21793674 DOI: 10.2217/nnm.11.79] [Cited by in Crossref: 350] [Cited by in F6Publishing: 316] [Article Influence: 35.0] [Reference Citation Analysis]
301 Yang L, Sun C, Lin H, Gong X, Zhou T, Deng W, Chen Z, Gao J. Sensitive Contrast-Enhanced Magnetic Resonance Imaging of Orthotopic and Metastatic Hepatic Tumors by Ultralow Doses of Zinc Ferrite Octapods. Chem Mater 2019;31:1381-90. [DOI: 10.1021/acs.chemmater.8b04760] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
302 Higashino T, Nakatsuji H, Fukuda R, Okamoto H, Imai H, Matsuda T, Tochio H, Shirakawa M, Tkachenko NV, Hashida M, Murakami T, Imahori H. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19 F Magnetic Resonance Imaging. ChemBioChem 2017;18:951-9. [DOI: 10.1002/cbic.201700071] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
303 Zhou X, Yang L, Yan G, Xu W, Zhou C, Zhang Q, Li L, Liu F, Guo J, Zhao Q. Dopamine-containing gadolinium complex as magnetic resonance imaging contrast agent. Journal of Rare Earths 2012;30:884-9. [DOI: 10.1016/s1002-0721(12)60150-1] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
304 Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N. Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 2015;44:4922-52. [DOI: 10.1039/c4cs00394b] [Cited by in Crossref: 136] [Cited by in F6Publishing: 19] [Article Influence: 22.7] [Reference Citation Analysis]
305 Xiao J, Tian XM, Yang C, Liu P, Luo NQ, Liang Y, Li HB, Chen DH, Wang CX, Li L, Yang GW. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci Rep 2013;3:3424. [PMID: 24305731 DOI: 10.1038/srep03424] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 7.5] [Reference Citation Analysis]
306 Liu G, Tse NMK, Hill MR, Kennedy DF, Drummond CJ. Disordered Mesoporous Gadolinosilicate Nanoparticles Prepared Using Gadolinium Based Ionic Liquid Emulsions: Potential as Magnetic Resonance Imaging Contrast Agents. Aust J Chem 2011;64:617. [DOI: 10.1071/ch11064] [Cited by in Crossref: 11] [Article Influence: 1.1] [Reference Citation Analysis]
307 Li Y, Laurent S, Esser L, Elst LV, Muller RN, Lowe AB, Boyer C, Davis TP. The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polym Chem 2014;5:2592-601. [DOI: 10.1039/c3py01676e] [Cited by in Crossref: 40] [Article Influence: 5.7] [Reference Citation Analysis]
308 Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB. Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc 2011;133:14704-9. [PMID: 21800868 DOI: 10.1021/ja204516p] [Cited by in Crossref: 101] [Cited by in F6Publishing: 86] [Article Influence: 10.1] [Reference Citation Analysis]
309 Qin L, Sun Z, Cheng K, Liu S, Pang J, Xia L, Chen W, Cheng Z, Chen J. Zwitterionic Manganese and Gadolinium Metal–Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2017;9:41378-86. [DOI: 10.1021/acsami.7b09608] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
310 Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: "Three-in-one" theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther 2019;25:504-14. [PMID: 30385298 DOI: 10.1016/j.pdpdt.2018.10.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
311 Aime S, Baroni S, Delli Castelli D, Brücher E, Fábián I, Serra SC, Fringuello Mingo A, Napolitano R, Lattuada L, Tedoldi F, Baranyai Z. Exploiting the Proton Exchange as an Additional Route to Enhance the Relaxivity of Paramagnetic MRI Contrast Agents. Inorg Chem 2018;57:5567-74. [DOI: 10.1021/acs.inorgchem.8b00521] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
312 Carron S, Li QY, Vander Elst L, Muller RN, Parac-Vogt TN, Capobianco JA. Assembly of near infra-red emitting upconverting nanoparticles and multiple Gd(III)-chelates as a potential bimodal contrast agent for MRI and optical imaging. Dalton Trans 2015;44:11331-9. [PMID: 26011519 DOI: 10.1039/c5dt00919g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
313 Chen Y, Li N, Wang J, Zhang X, Pan W, Yu L, Tang B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019;9:167-78. [PMID: 30662560 DOI: 10.7150/thno.28033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
314 Zhang J, Mu Y, Ma Z, Han K, Han H. Tumor-triggered transformation of chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise photodynamic therapy. Biomaterials 2018;182:269-78. [DOI: 10.1016/j.biomaterials.2018.08.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
315 Zhu S, Xu X, Rong R, Li B, Wang X. Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration. Toxicol Res (Camb) 2016;5:97-106. [PMID: 30090329 DOI: 10.1039/c5tx00292c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
316 Verwilst P, Eliseeva SV, Carron S, Vander Elst L, Burtea C, Dehaen G, Laurent S, Binnemans K, Muller RN, Parac-vogt TN, De Borggraeve WM. A Modular Approach towards the Synthesis of Target-Specific MRI Contrast Agents. Eur J Inorg Chem 2011;2011:3577-85. [DOI: 10.1002/ejic.201100575] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
317 Shinoda S. Dynamic cyclen-metal complexes for molecular sensing and chirality signaling. Chem Soc Rev 2013;42:1825-35. [PMID: 23034678 DOI: 10.1039/c2cs35295h] [Cited by in Crossref: 62] [Cited by in F6Publishing: 4] [Article Influence: 6.9] [Reference Citation Analysis]
318 Qian X, Han X, Yu L, Xu T, Chen Y. Manganese‐Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Adv Funct Mater 2019;30:1907066. [DOI: 10.1002/adfm.201907066] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
319 Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. Radiolabeling of PAMAM dendrimers conjugated to a pyridine-N-oxide DOTA analog with 111In: Optimization of reaction conditions and biodistribution. Journal of Pharmaceutical and Biomedical Analysis 2011;56:505-12. [DOI: 10.1016/j.jpba.2011.06.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
320 Pereira C, Pereira AM, Rocha M, Freire C, Geraldes CFGC. Architectured design of superparamagnetic Fe 3 O 4 nanoparticles for application as MRI contrast agents: mastering size and magnetism for enhanced relaxivity. J Mater Chem B 2015;3:6261-73. [DOI: 10.1039/c5tb00789e] [Cited by in Crossref: 25] [Article Influence: 4.2] [Reference Citation Analysis]
321 Phukan B, Mukherjee C, Varshney R. A new heptadentate picolinate-based ligand and its corresponding Gd( iii ) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Trans 2018;47:135-42. [DOI: 10.1039/c7dt04150k] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
322 Thanapandiyaraj R, Rajendran T, Mohammedgani PB. Performance Analysis of Various Nanocontrast Agents and CAD Systems for Cancer Diagnosis. Curr Med Imaging Rev 2019;15:831-52. [PMID: 32008531 DOI: 10.2174/1573405614666180924124736] [Reference Citation Analysis]
323 Rolla GA, Botta M, Tei L, Cabella C, Ghiani S, Brioschi C, Maiocchi A. Paramagnetic Solid Lipid Nanoparticles as a Novel Platform for the Development of Molecular MRI Probes. Chem Eur J 2013;19:11189-93. [DOI: 10.1002/chem.201301837] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
324 Cao F, Huang T, Wang Y, Liu F, Chen L, Ling J, Sun J. Novel lanthanide–polymer complexes for dye-free dual modal probes for MRI and fluorescence imaging. Polym Chem 2015;6:7949-57. [DOI: 10.1039/c5py01011j] [Cited by in Crossref: 27] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
325 Du Q, Huang Z, Wu Z, Meng X, Yin G, Gao F, Wang L. Facile preparation and bifunctional imaging of Eu-doped GdPO 4 nanorods with MRI and cellular luminescence. Dalton Trans 2015;44:3934-40. [DOI: 10.1039/c4dt03444a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
326 Guo C, Sun L, Cai H, Duan Z, Zhang S, Gong Q, Luo K, Gu Z. Gadolinium-Labeled Biodegradable Dendron-Hyaluronic Acid Hybrid and Its Subsequent Application as a Safe and Efficient Magnetic Resonance Imaging Contrast Agent. ACS Appl Mater Interfaces 2017;9:23508-19. [PMID: 28656751 DOI: 10.1021/acsami.7b06496] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
327 Takata T. Switchable Polymer Materials Controlled by Rotaxane Macromolecular Switches. ACS Cent Sci 2020;6:129-43. [PMID: 32123731 DOI: 10.1021/acscentsci.0c00002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 20.0] [Reference Citation Analysis]
328 Cittadino E, Botta M, Tei L, Kielar F, Stefania R, Chiavazza E, Aime S, Terreno E. In Vivo Magnetic Resonance Imaging Detection of Paramagnetic Liposomes Loaded with Amphiphilic Gadolinium(III) Complexes: Impact of Molecular Structure on Relaxivity and Excretion Efficiency. ChemPlusChem 2013;78:712-22. [DOI: 10.1002/cplu.201300096] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
329 Vithanarachchi SM, Foley CD, Trimpin S, Ewing JR, Ali MM, Allen MJ. Myelin-targeted, texaphyrin-based multimodal imaging agent for magnetic resonance and optical imaging. Contrast Media Mol Imaging 2016;11:492-505. [PMID: 27596704 DOI: 10.1002/cmmi.1711] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
330 Kukreja A, Kang B, Han S, Shin MK, Son HY, Choi Y, Lim EK, Huh YM, Haam S. Inner structure- and surface-controlled hollow MnO nanocubes for high sensitive MR imaging contrast effect. Nano Converg 2020;7:16. [PMID: 32394133 DOI: 10.1186/s40580-020-00227-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
331 Esmaeilpour M, Sardarian A, Javidi J. Dendrimer-encapsulated Pd(0) nanoparticles immobilized on nanosilica as a highly active and recyclable catalyst for the copper- and phosphine-free Sonogashira–Hagihara coupling reactions in water. Catal Sci Technol 2016;6:4005-19. [DOI: 10.1039/c5cy01455g] [Cited by in Crossref: 53] [Article Influence: 10.6] [Reference Citation Analysis]
332 Debroye E, Eliseeva SV, Laurent S, Vander Elst L, Petoud S, Muller RN, Parac-vogt TN. Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)-Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging: Lanthanide(III) Complexes of DTPA Bisamide Derivatives. Eur J Inorg Chem 2013;2013:2629-39. [DOI: 10.1002/ejic.201300196] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
333 Zheng X, Li L, Sun L, Yan C. Lanthanide Nanoparticles. Including Actinides. Elsevier; 2016. pp. 301-35. [DOI: 10.1016/bs.hpcre.2016.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
334 Kielar F, Tei L, Terreno E, Botta M. Large relaxivity enhancement of paramagnetic lipid nanoparticles by restricting the local motions of the Gd(III) chelates. J Am Chem Soc 2010;132:7836-7. [PMID: 20481537 DOI: 10.1021/ja101518v] [Cited by in Crossref: 119] [Cited by in F6Publishing: 109] [Article Influence: 10.8] [Reference Citation Analysis]
335 Nguyen HV, Chen Q, Paletta JT, Harvey P, Jiang Y, Zhang H, Boska MD, Ottaviani MF, Jasanoff A, Rajca A, Johnson JA. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS Cent Sci 2017;3:800-11. [PMID: 28776023 DOI: 10.1021/acscentsci.7b00253] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 20.3] [Reference Citation Analysis]
336 Vithanarachchi SM, Allen MJ. A multimodal, β-amyloid-targeted contrast agent. Chem Commun 2013;49:4148-50. [DOI: 10.1039/c2cc36583a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
337 Xu X, Liu K, Wang Y, Zhang C, Shi M, Wang P, Shen L, Xia J, Ye L, Shi X, Shen M. A multifunctional low-generation dendrimer-based nanoprobe for the targeted dual mode MR/CT imaging of orthotopic brain gliomas. J Mater Chem B 2019;7:3639-43. [DOI: 10.1039/c9tb00416e] [Cited by in Crossref: 17] [Article Influence: 8.5] [Reference Citation Analysis]
338 Nazemi A, Martínez F, Scholl TJ, Gillies ER. Biodegradable dendritic polymersomes as modular, high-relaxivity MRI contrast agents. RSC Adv 2012;2:7971. [DOI: 10.1039/c2ra20886e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
339 Chaabane L, Tei L, Miragoli L, Lattuada L, von Wronski M, Uggeri F, Lorusso V, Aime S. In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide. Mol Imaging Biol 2015;17:819-28. [DOI: 10.1007/s11307-015-0846-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
340 Takata T, Aoki D. Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J 2018;50:127-47. [DOI: 10.1038/pj.2017.60] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 6.8] [Reference Citation Analysis]
341 Lim J, Pavan GM, Annunziata O, Simanek EE. Experimental and Computational Evidence for an Inversion in Guest Capacity in High-Generation Triazine Dendrimer Hosts. J Am Chem Soc 2012;134:1942-5. [DOI: 10.1021/ja210122z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
342 Mura S, Couvreur P. Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews 2012;64:1394-416. [DOI: 10.1016/j.addr.2012.06.006] [Cited by in Crossref: 291] [Cited by in F6Publishing: 267] [Article Influence: 32.3] [Reference Citation Analysis]
343 Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 2017;114:23-33. [PMID: 27837682 DOI: 10.1016/j.biomaterials.2016.10.027] [Cited by in Crossref: 102] [Cited by in F6Publishing: 82] [Article Influence: 20.4] [Reference Citation Analysis]
344 Baranyai Z, Carniato F, Nucera A, Horváth D, Tei L, Platas-Iglesias C, Botta M. Defining the conditions for the development of the emerging class of FeIII-based MRI contrast agents. Chem Sci 2021;12:11138-45. [PMID: 34522311 DOI: 10.1039/d1sc02200h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
345 Bastakoti BP, Sukegawa H, Wu KC, Yamauchi Y. Synthesis of porous iron oxide microspheres by a double hydrophilic block copolymer. RSC Adv 2014;4:9986. [DOI: 10.1039/c3ra47490a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
346 Aime S, Botta M, Esteban-gómez D, Platas-iglesias C. Characterisation of magnetic resonance imaging (MRI) contrast agents using NMR relaxometry. Molecular Physics 2019;117:898-909. [DOI: 10.1080/00268976.2018.1516898] [Cited by in Crossref: 29] [Cited by in F6Publishing: 9] [Article Influence: 9.7] [Reference Citation Analysis]
347 Carniato F, Tei L, Arrais A, Marchese L, Botta M. Selective Anchoring of Gd III Chelates on the External Surface of Organo-Modified Mesoporous Silica Nanoparticles: A New Chemical Strategy To Enhance Relaxivity. Chem Eur J 2013;19:1421-8. [DOI: 10.1002/chem.201202670] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
348 Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. Journal of Controlled Release 2014;190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Cited by in Crossref: 234] [Cited by in F6Publishing: 209] [Article Influence: 33.4] [Reference Citation Analysis]
349 Huang G, Li H, Chen J, Zhao Z, Yang L, Chi X, Chen Z, Wang X, Gao J. Tunable T 1 and T 2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 2014;6:10404. [DOI: 10.1039/c4nr02680b] [Cited by in Crossref: 93] [Cited by in F6Publishing: 23] [Article Influence: 13.3] [Reference Citation Analysis]
350 Ocsoy I, Tasdemir D, Mazicioglu S, Tan W. Nanotechnology in Plants. In: Varshney RK, Pandey MK, Chitikineni A, editors. Plant Genetics and Molecular Biology. Cham: Springer International Publishing; 2018. pp. 263-75. [DOI: 10.1007/10_2017_53] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
351 Zhang Y, Zhang H, Huang D, Tan B, Zhang C, Deng Z. Naphthalene-facilitated self-assembly of a Gd-chelate as a novel T2 MRI contrast agent for visualization of stem cell transplants. J Mater Chem B 2021;9:5729-37. [PMID: 34231635 DOI: 10.1039/d1tb00424g] [Reference Citation Analysis]
352 Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. European Journal of Pharmaceutics and Biopharmaceutics 2015;97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
353 Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015;115:5274-300. [DOI: 10.1021/cr500542t] [Cited by in Crossref: 264] [Cited by in F6Publishing: 222] [Article Influence: 44.0] [Reference Citation Analysis]
354 Nithyakumar A, Alexander V. Synthesis, relaxivity, and in vitro fluorescence imaging studies of a novel d-f heterometallic trinuclear complex as a potential bimodal imaging probe for MRI and optical imaging. Dalton Trans 2015;44:17800-9. [PMID: 26400754 DOI: 10.1039/c5dt02123e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
355 Tu C, Osborne EA, Louie AY. Activatable T₁ and T₂ magnetic resonance imaging contrast agents. Ann Biomed Eng 2011;39:1335-48. [PMID: 21331662 DOI: 10.1007/s10439-011-0270-0] [Cited by in Crossref: 61] [Cited by in F6Publishing: 52] [Article Influence: 6.1] [Reference Citation Analysis]
356 Hu Z, Ahrén M, Selegård L, Skoglund C, Söderlind F, Engström M, Zhang X, Uvdal K. Highly Water-Dispersible Surface-Modified Gd 2 O 3 Nanoparticles for Potential Dual-Modal Bioimaging. Chem Eur J 2013;19:12658-67. [DOI: 10.1002/chem.201301687] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
357 Cheng W, Ping Y, Zhang Y, Chuang KH, Liu Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J Healthc Eng 2013;4:23-45. [PMID: 23502248 DOI: 10.1260/2040-2295.4.1.23] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
358 Nithyakumar A, Alexander V. Tri- and tetranuclear Ru II –GdIII2 and Ru II –GdIII3 d–f heterometallic complexes as potential bimodal imaging probes for MRI and optical imaging. New J Chem 2016;40:4606-16. [DOI: 10.1039/c5nj03393d] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
359 Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 2012;22:15110. [DOI: 10.1039/c2jm16851k] [Cited by in Crossref: 110] [Cited by in F6Publishing: 88] [Article Influence: 12.2] [Reference Citation Analysis]
360 Gale EM, Kenton N, Caravan P. [Gd(CyPic3A)(H2O)2]-: a stable, bis(aquated) and high-relaxivity Gd(III) complex. Chem Commun (Camb) 2013;49:8060-2. [PMID: 23903523 DOI: 10.1039/c3cc44116d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
361 Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020;110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
362 Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:1-18. [PMID: 23047730 DOI: 10.1002/wnan.1198] [Cited by in Crossref: 212] [Cited by in F6Publishing: 175] [Article Influence: 23.6] [Reference Citation Analysis]
363 Blanco-andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-flesch D, Begin-colin S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 2016;11:1889-910. [DOI: 10.2217/nnm-2016-5001] [Cited by in Crossref: 142] [Cited by in F6Publishing: 102] [Article Influence: 28.4] [Reference Citation Analysis]
364 Cai X, Hu J, Xiao J, Cheng Y. Dendrimer and cancer: a patent review (2006-present). Expert Opin Ther Pat 2013;23:515-29. [PMID: 23339480 DOI: 10.1517/13543776.2013.761207] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
365 Tirotta I, Mastropietro A, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G. A Superfluorinated Molecular Probe for Highly Sensitive in Vivo19 F-MRI. J Am Chem Soc 2014;136:8524-7. [DOI: 10.1021/ja503270n] [Cited by in Crossref: 87] [Cited by in F6Publishing: 74] [Article Influence: 12.4] [Reference Citation Analysis]
366 Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 2013;25:3144-76. [PMID: 23681931 DOI: 10.1002/adma.201205292] [Cited by in Crossref: 506] [Cited by in F6Publishing: 457] [Article Influence: 63.3] [Reference Citation Analysis]
367 Zhang L, Zhang D, Gao M, Jin Q, Jiang C, Wu T, Feng Y, Ni Y, Yin Z, Zhang J. Design and Evaluation of Rhein-Based MRI Contrast Agents for Visualization of Tumor Necrosis Induced by Combretastatin A-4 Disodium Phosphate. Mol Imaging Biol 2021;23:220-9. [PMID: 33048270 DOI: 10.1007/s11307-020-01551-3] [Reference Citation Analysis]
368 Chen Y, Zhu Q, Cui X, Tang W, Yang H, Yuan Y, Hu A. Preparation of Highly Efficient MRI Contrast Agents through Complexation of Cationic Gd III -Containing Metallosurfactant with Biocompatible Polyelectrolytes. Chem Eur J 2014;20:12477-82. [DOI: 10.1002/chem.201402530] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
369 Rotz MW, Culver KS, Parigi G, MacRenaris KW, Luchinat C, Odom TW, Meade TJ. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation. ACS Nano 2015;9:3385-96. [PMID: 25723190 DOI: 10.1021/nn5070953] [Cited by in Crossref: 79] [Cited by in F6Publishing: 67] [Article Influence: 13.2] [Reference Citation Analysis]
370 Abd-el-aziz AS, Agatemor C, Etkin N, Bissessur R. Toward a New Family of Bifunctional Organoiron Dendrimers: Facile Synthesis, Redox, and Photophysical Fingerprints. Macromol Chem Phys 2015;216:369-79. [DOI: 10.1002/macp.201400452] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
371 Martinelli J, Balali-Mood B, Panizzo R, Lythgoe MF, White AJ, Ferretti P, Steinke JH, Vilar R. Coordination chemistry of amide-functionalised tetraazamacrocycles: structural, relaxometric and cytotoxicity studies. Dalton Trans 2010;39:10056-67. [PMID: 20877892 DOI: 10.1039/c0dt00815j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
372 Kong D, Wei B, Zhou S, Yang H, Jiang Y. Volume-related efficiency of gadolinium polyoxometalates as MRI contrast agents. Chem Res Chin Univ 2013;29:1055-8. [DOI: 10.1007/s40242-013-3061-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
373 Carron S, Bloemen M, Vander elst L, Laurent S, Verbiest T, Parac-vogt TN. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe. Chem Eur J 2016;22:4521-7. [DOI: 10.1002/chem.201504731] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
374 Zhang B, Cheng L, Duan B, Tang W, Yuan Y, Ding Y, Hu A. Gadolinium complexes of diethylenetriamine- N -oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans 2019;48:1693-9. [DOI: 10.1039/c8dt04478c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
375 Ndiaye M, Malytskyi V, Vangijzegem T, Sauvage F, Wels M, Cadiou C, Moreau J, Henoumont C, Boutry S, Muller RN, Harakat D, Smedt SD, Laurent S, Chuburu F. Comparison of MRI Properties between Multimeric DOTAGA and DO3A Gadolinium-Dendron Conjugates. Inorg Chem 2019;58:12798-808. [DOI: 10.1021/acs.inorgchem.9b01747] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
376 Debroye E, Laurent S, Vander elst L, Muller RN, Parac-vogt TN. Dysprosium Complexes and Their Micelles as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging. Chem Eur J 2013;19:16019-28. [DOI: 10.1002/chem.201302418] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
377 Wallat JD, Czapar AE, Wang C, Wen AM, Wek KS, Yu X, Steinmetz NF, Pokorski JK. Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2017;18:103-12. [PMID: 27992176 DOI: 10.1021/acs.biomac.6b01389] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
378 Liu J, Li K, Geng J, Zhou L, Chandrasekharan P, Yang C, Liu B. Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polym Chem 2013;4:1517-24. [DOI: 10.1039/c2py20837g] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
379 Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nanoscale 2016;8:10491-510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Cited by in Crossref: 46] [Cited by in F6Publishing: 8] [Article Influence: 15.3] [Reference Citation Analysis]
380 Guo H, Jiang Z, Song S, Dai T, Wang X, Sun K, Zhou G, Dou H. Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. Journal of Colloid and Interface Science 2016;482:95-104. [DOI: 10.1016/j.jcis.2016.07.042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
381 Zhang Y, Zou T, Guan M, Zhen M, Chen D, Guan X, Han H, Wang C, Shu C. Synergistic Effect of Human Serum Albumin and Fullerene on Gd-DO3A for Tumor-Targeting Imaging. ACS Appl Mater Interfaces 2016;8:11246-54. [DOI: 10.1021/acsami.5b12848] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
382 Zhen M, Zheng J, Wang Y, Shu C, Gao F, Zou J, Pyykkö I, Wang C. Multifunctional nanoprobe for MRI/optical dual-modality imaging and radical scavenging. Chemistry 2013;19:14675-81. [PMID: 24027072 DOI: 10.1002/chem.201301601] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
383 Chen Y, Li M, Hong Y, Lam JW, Zheng Q, Tang BZ. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime. ACS Appl Mater Interfaces 2014;6:10783-91. [PMID: 24942209 DOI: 10.1021/am502282f] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 7.6] [Reference Citation Analysis]
384 Holder AA. Inorganic pharmaceuticals. Annu Rep Prog Chem , Sect A: Inorg Chem 2011;107:359. [DOI: 10.1039/c1ic90005f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
385 Bagaria HG, Wong MS. Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles. J Mater Chem 2011;21:9454. [DOI: 10.1039/c1jm10712g] [Cited by in Crossref: 60] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
386 Hasserodt J. Magnetogenic probes that respond to chemical stimuli in an off–on mode. New J Chem 2012;36:1707. [DOI: 10.1039/c2nj40209b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
387 Yin T, Huang P, Gao G, Shapter JG, Shen Y, Sun R, Yue C, Zhang C, Liu Y, Zhou S, Cui D. Superparamagnetic Fe3O4-PEG2K-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy. Sci Rep 2016;6:36187. [PMID: 27824072 DOI: 10.1038/srep36187] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
388 Ma X, Gong A, Xiang L, Chen T, Gao Y, Liang X, Shen Z, Wu A. Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. J Mater Chem B 2013;1:3419. [DOI: 10.1039/c3tb20648c] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
389 Sigg SJ, Santini F, Najer A, Richard PU, Meier WP, Palivan CG. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu. Chem Commun 2016;52:9937-40. [DOI: 10.1039/c6cc03396b] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
390 Li Y, Qian Y, Liu T, Zhang G, Liu S. Light-Triggered Concomitant Enhancement of Magnetic Resonance Imaging Contrast Performance and Drug Release Rate of Functionalized Amphiphilic Diblock Copolymer Micelles. Biomacromolecules 2012;13:3877-86. [DOI: 10.1021/bm301425j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 59] [Article Influence: 7.8] [Reference Citation Analysis]
391 Wang L, Lin H, Chi X, Sun C, Huang J, Tang X, Chen H, Luo X, Yin Z, Gao J. A Self-Assembled Biocompatible Nanoplatform for Multimodal MR/Fluorescence Imaging Assisted Photothermal Therapy and Prognosis Analysis. Small 2018;14:1801612. [DOI: 10.1002/smll.201801612] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
392 Ormategui N, García I, Padro D, Cabañero G, Grande HJ, Loinaz I. Synthesis of single chain thermoresponsive polymernanoparticles. Soft Matter 2012;8:734-40. [DOI: 10.1039/c1sm06310c] [Cited by in Crossref: 44] [Cited by in F6Publishing: 1] [Article Influence: 4.9] [Reference Citation Analysis]
393 Tosh DK, Phan K, Deflorian F, Wei Q, Yoo LS, Gao ZG, Jacobson KA. Click modification in the N6 region of A3 adenosine receptor-selective carbocyclic nucleosides for dendrimeric tethering that preserves pharmacophore recognition. Bioconjug Chem 2012;23:232-47. [PMID: 22175234 DOI: 10.1021/bc200526c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
394 Liu D, He C, Poon C, Lin W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J Mater Chem B 2014;2:8249-55. [DOI: 10.1039/c4tb00751d] [Cited by in Crossref: 44] [Cited by in F6Publishing: 3] [Article Influence: 6.3] [Reference Citation Analysis]
395 Wang L, Lin H, Ma L, Sun C, Huang J, Li A, Zhao T, Chen Z, Gao J. Geometrical confinement directed albumin-based nanoprobes as enhanced T 1 contrast agents for tumor imaging. J Mater Chem B 2017;5:8004-12. [DOI: 10.1039/c7tb02005h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
396 Carniato F, Alberti D, Lapadula A, Martinelli J, Isidoro C, Geninatti Crich S, Tei L. Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery. J Mater Chem B 2019;7:3143-52. [DOI: 10.1039/c9tb00375d] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
397 Fuentes-paniagua E, Hernández-ros JM, Sánchez-milla M, Camero MA, Maly M, Pérez-serrano J, Copa-patiño JL, Sánchez-nieves J, Soliveri J, Gómez R, Javier de la Mata F. Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv 2014;4:1256-65. [DOI: 10.1039/c3ra45408h] [Cited by in Crossref: 50] [Article Influence: 7.1] [Reference Citation Analysis]
398 Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2015;115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Cited by in Crossref: 249] [Cited by in F6Publishing: 209] [Article Influence: 35.6] [Reference Citation Analysis]
399 Nazemi A, Gillies ER. Dendritic surface functionalization of nanomaterials: controlling properties and functions for biomedical applications. Braz J Pharm Sci 2013;49:15-32. [DOI: 10.1590/s1984-82502013000700003] [Cited by in Crossref: 12] [Article Influence: 1.5] [Reference Citation Analysis]
400 Bai C, Jia Z, Song L, Zhang W, Chen Y, Zang F, Ma M, Gu N, Zhang Y. Time-Dependent T 1 -T 2 Switchable Magnetic Resonance Imaging Realized by c(RGDyK) Modified Ultrasmall Fe 3 O 4 Nanoprobes. Adv Funct Mater 2018;28:1802281. [DOI: 10.1002/adfm.201802281] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 8.7] [Reference Citation Analysis]
401 Boros E, Gale EM, Caravan P. MR imaging probes: design and applications. Dalton Trans 2015;44:4804-18. [PMID: 25376893 DOI: 10.1039/c4dt02958e] [Cited by in Crossref: 85] [Cited by in F6Publishing: 28] [Article Influence: 14.2] [Reference Citation Analysis]
402 Carniato F, Tei L, Botta M. Gd-Based Mesoporous Silica Nanoparticles as MRI Probes: Gd-Based Mesoporous Silica Nanoparticles as MRI Probes. Eur J Inorg Chem 2018;2018:4936-54. [DOI: 10.1002/ejic.201801039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 7.3] [Reference Citation Analysis]
403 Harris M, Laskaratou D, Elst LV, Mizuno H, Parac-vogt TN. Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement. ACS Appl Mater Interfaces 2019;11:5752-61. [DOI: 10.1021/acsami.8b18456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
404 Naveed K, Wang L, Yu H, Ullah RS, Haroon M, Fahad S, Li J, Elshaarani T, Khan RU, Nazir A. Recent progress in the electron paramagnetic resonance study of polymers. Polym Chem 2018;9:3306-35. [DOI: 10.1039/c8py00689j] [Cited by in Crossref: 35] [Article Influence: 11.7] [Reference Citation Analysis]
405 Mondjinou YA, Loren BP, Collins CJ, Hyun SH, Demoret A, Skulsky J, Chaplain C, Badwaik V, Thompson DH. Gd3+:DOTA-Modified 2-Hydroxypropyl-β-Cyclodextrin/4-Sulfobutyl Ether-β-Cyclodextrin-Based Polyrotaxanes as Long Circulating High Relaxivity MRI Contrast Agents. Bioconjug Chem 2018;29:3550-60. [PMID: 30403467 DOI: 10.1021/acs.bioconjchem.8b00525] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
406 Hansen K, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018;9:1479-516. [DOI: 10.1039/c7py02001e] [Cited by in Crossref: 75] [Cited by in F6Publishing: 2] [Article Influence: 25.0] [Reference Citation Analysis]