BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khatua C, Min S, Jung HJ, Shin JE, Li N, Jun I, Liu H, Bae G, Choi H, Ko MJ, Jeon YS, Kim YJ, Lee J, Ko M, Shim G, Shin H, Lee S, Chung S, Kim YK, Song J, Dravid VP, Kang H. In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. Nano Lett 2020;20:4188-96. [DOI: 10.1021/acs.nanolett.0c00559] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Min S, Jeon YS, Choi H, Khatua C, Li N, Bae G, Jung HJ, Kim Y, Hong H, Shin J, Ko MJ, Ko HS, Kim T, Moon JH, Song J, Dravid VP, Kim YK, Kang H. Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. Nano Lett 2020;20:7272-80. [DOI: 10.1021/acs.nanolett.0c02655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Min S, Jeon YS, Jung HJ, Khatua C, Li N, Bae G, Choi H, Hong H, Shin JE, Ko MJ, Ko HS, Jun I, Fu HE, Kim SH, Thangam R, Song JJ, Dravid VP, Kim YK, Kang H. Independent Tuning of Nano-Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells. Adv Mater 2020;32:e2004300. [PMID: 32820574 DOI: 10.1002/adma.202004300] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
3 Yin B, Ho WKH, Zhang Q, Li C, Huang Y, Yan J, Yang H, Hao J, Wong SHD, Yang M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS Appl Mater Interfaces 2022;14:4714-24. [PMID: 35081679 DOI: 10.1021/acsami.1c21173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. Small 2022;:e2104783. [PMID: 35132796 DOI: 10.1002/smll.202104783] [Reference Citation Analysis]
5 He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. Exploration 2022;2:20210093. [DOI: 10.1002/exp.20210093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhang X, van Rijt S. 2D biointerfaces to study stem cell-ligand interactions. Acta Biomater 2021;131:80-96. [PMID: 34237424 DOI: 10.1016/j.actbio.2021.06.044] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Thangam R, Kim MS, Bae G, Kim Y, Kang N, Lee S, Jung HJ, Jang J, Choi H, Li N, Kim M, Park S, Kim SY, Koo TM, Fu HE, Jeon YS, Ambriović‐ristov A, Song J, Kim SY, Park S, Wei Q, Ko C, Lee K, Paulmurugan R, Kim YK, Kang H. Remote Switching of Elastic Movement of Decorated Ligand Nanostructures Controls the Adhesion‐Regulated Polarization of Host Macrophages. Adv Funct Mater 2021;31:2008698. [DOI: 10.1002/adfm.202008698] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
8 Kim Y, Choi H, Shin JE, Bae G, Thangam R, Kang H. Remote active control of nanoengineered materials for dynamic nanobiomedical engineering. View 2020;1:20200029. [DOI: 10.1002/viw.20200029] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
9 Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small 2021;:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Reference Citation Analysis]
10 Min S, Ko MJ, Jung HJ, Kim W, Han SB, Kim Y, Bae G, Lee S, Thangam R, Choi H, Li N, Shin JE, Jeon YS, Park HS, Kim YJ, Sukumar UK, Song JJ, Park SK, Yu SH, Kang YC, Lee KB, Wei Q, Kim DH, Han SM, Paulmurugan R, Kim YK, Kang H. Remote Control of Time-Regulated Stretching of Ligand-Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells. Adv Mater 2021;33:e2008353. [PMID: 33527502 DOI: 10.1002/adma.202008353] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
11 Lee S, Kim MS, Patel KD, Choi H, Thangam R, Yoon J, Koo TM, Jung HJ, Min S, Bae G, Kim Y, Han SB, Kang N, Kim M, Li N, Fu HE, Jeon YS, Song JJ, Kim DH, Park S, Choi JW, Paulmurugan R, Kang YC, Lee H, Wei Q, Dravid VP, Lee KB, Kim YK, Kang H. Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small 2021;17:e2102892. [PMID: 34515417 DOI: 10.1002/smll.202102892] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Kim Y, Jung HJ, Lee Y, Koo S, Thangam R, Jang WY, Kim SY, Park S, Lee S, Bae G, Patel KD, Wei Q, Lee KB, Paulmurugan R, Jeong WK, Hyeon T, Kim D, Kang H. Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages. J Am Chem Soc 2022. [PMID: 35275625 DOI: 10.1021/jacs.1c08861] [Reference Citation Analysis]
13 Cui T, Wu S, Wei Y, Qin H, Ren J, Qu X. A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angewandte Chemie. [DOI: 10.1002/ange.202113103] [Reference Citation Analysis]