BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Coffey AM, Truong ML, Chekmenev EY. Low-field MRI can be more sensitive than high-field MRI. J Magn Reson 2013;237:169-74. [PMID: 24239701 DOI: 10.1016/j.jmr.2013.10.013] [Cited by in Crossref: 66] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson  BM. Heterogeneous Solution NMR Signal Amplification by Reversible Exchange. Angew Chem 2014;126:7625-8. [DOI: 10.1002/ange.201403135] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
2 Nikolaou P, Coffey AM, Walkup LL, Gust BM, LaPierre CD, Koehnemann E, Barlow MJ, Rosen MS, Goodson BM, Chekmenev EY. A 3D-printed high power nuclear spin polarizer. J Am Chem Soc 2014;136:1636-42. [PMID: 24400919 DOI: 10.1021/ja412093d] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 7.6] [Reference Citation Analysis]
3 Romero JA, Rodriguez GG, Anoardo E. A fast field-cycling MRI relaxometer for physical contrasts design and pre-clinical studies in small animals. J Magn Reson 2020;311:106682. [PMID: 31923764 DOI: 10.1016/j.jmr.2019.106682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Coffey AM, Shchepin RV, Truong ML, Wilkens K, Pham W, Chekmenev EY. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents. Anal Chem 2016;88:8279-88. [PMID: 27478927 DOI: 10.1021/acs.analchem.6b02130] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 10.8] [Reference Citation Analysis]
5 Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson BM. Heterogeneous solution NMR signal amplification by reversible exchange. Angew Chem Int Ed Engl 2014;53:7495-8. [PMID: 24889730 DOI: 10.1002/anie.201403135] [Cited by in Crossref: 72] [Cited by in F6Publishing: 67] [Article Influence: 9.0] [Reference Citation Analysis]
6 Ariyasingha NM, Salnikov OG, Kovtunov KV, Kovtunova LM, Bukhtiyarov VI, Goodson BM, Rosen MS, Koptyug IV, Gelovani JG, Chekmenev EY. Relaxation Dynamics of Nuclear Long-Lived Spin States in Propane and Propane-d6 Hyperpolarized by Parahydrogen. J Phys Chem C Nanomater Interfaces 2019;123:11734-44. [PMID: 31798763 DOI: 10.1021/acs.jpcc.9b01538] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
7 Abramson RG, Arlinghaus LR, Dula AN, Quarles CC, Stokes AM, Weis JA, Whisenant JG, Chekmenev EY, Zhukov I, Williams JM, Yankeelov TE. MR Imaging Biomarkers in Oncology Clinical Trials. Magn Reson Imaging Clin N Am 2016;24:11-29. [PMID: 26613873 DOI: 10.1016/j.mric.2015.08.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
8 Kuzmin VV, Bidinosti CP, Hayden ME, Nacher PJ. An improved shielded RF transmit coil for low-frequency NMR and MRI. J Magn Reson 2015;256:70-6. [PMID: 26022393 DOI: 10.1016/j.jmr.2015.05.001] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
9 Barskiy DA, Salnikov OG, Kovtunov KV, Koptyug IV. NMR Signal Enhancement for Hyperpolarized Fluids Continuously Generated in Hydrogenation Reactions with Parahydrogen. J Phys Chem A 2015;119:996-1006. [DOI: 10.1021/jp510572d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
10 Kovtunov KV, Salnikov OG, Zhivonitko VV, Skovpin IV, Bukhtiyarov VI, Koptyug IV. Catalysis and Nuclear Magnetic Resonance Signal Enhancement with Parahydrogen. Top Catal 2016;59:1686-99. [DOI: 10.1007/s11244-016-0688-6] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
11 Shen K, Logan AWJ, Colell JFP, Bae J, Ortiz GX, Theis T, Warren WS, Malcolmson SJ, Wang Q. Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long‐Lived SABRE‐Induced Hyperpolarization. Angew Chem 2017;129:12280-4. [DOI: 10.1002/ange.201704970] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 4.6] [Reference Citation Analysis]
12 Kovtunov KV, Truong ML, Barskiy DA, Koptyug IV, Coffey AM, Waddell KW, Chekmenev EY. Long-lived spin States for low-field hyperpolarized gas MRI. Chemistry 2014;20:14629-32. [PMID: 25263795 DOI: 10.1002/chem.201405063] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
13 Zhu Y, Chen CH, Wilson Z, Savukov I, Hilty C. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization. J Magn Reson 2016;270:71-6. [PMID: 27423094 DOI: 10.1016/j.jmr.2016.06.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
14 Wu Z, Chen W, Nayak KS. Minimum Field Strength Simulator for Proton Density Weighted MRI. PLoS One 2016;11:e0154711. [PMID: 27136334 DOI: 10.1371/journal.pone.0154711] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
15 Salnikov OG, Nikolaou P, Ariyasingha NM, Kovtunov KV, Koptyug IV, Chekmenev EY. Clinical-Scale Batch-Mode Production of Hyperpolarized Propane Gas for MRI. Anal Chem 2019;91:4741-6. [PMID: 30855132 DOI: 10.1021/acs.analchem.9b00259] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
16 Zhivonitko VV, Svyatova AI, Kovtunov KV, Koptyug IV. Recent MRI Studies on Heterogeneous Catalysis. Elsevier; 2018. pp. 83-145. [DOI: 10.1016/bs.arnmr.2018.06.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Blümich B. Virtual special issue: Magnetic resonance at low fields. J Magn Reson 2017;274:145-7. [PMID: 27742163 DOI: 10.1016/j.jmr.2016.10.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
18 Shchepin RV, Jaigirdar L, Chekmenev EY. Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields. J Phys Chem C Nanomater Interfaces 2018;122:4984-96. [PMID: 29955244 DOI: 10.1021/acs.jpcc.8b00283] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
19 Frolov VV, Tyutyukin KV, Shubin SA, Lavrov SA, Bogachev YV. A Multinuclear Low Field Magnetic Resonance Minitomograph. Instrum Exp Tech 2020;63:730-4. [DOI: 10.1134/s0020441220050127] [Reference Citation Analysis]
20 Vershovskii AK, Pazgalev AS, Petrenko MV. All-Optical Magnetometric Sensor for Magnetoencephalography and Ultralow Field Tomography. Tech Phys Lett 2020;46:877-80. [DOI: 10.1134/s1063785020090126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
21 Nikolaou P, Coffey AM, Ranta K, Walkup LL, Gust BM, Barlow MJ, Rosen MS, Goodson BM, Chekmenev EY. Multidimensional mapping of spin-exchange optical pumping in clinical-scale batch-mode 129Xe hyperpolarizers. J Phys Chem B 2014;118:4809-16. [PMID: 24731261 DOI: 10.1021/jp501493k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
22 Suefke M, Liebisch A, Blümich B, Appelt S. External high-quality-factor resonator tunes up nuclear magnetic resonance. Nature Phys 2015;11:767-71. [DOI: 10.1038/nphys3382] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 5.1] [Reference Citation Analysis]
23 Rodriguez GG, Salvatori A, Anoardo E. Dual k-space and image-space post-processing for field-cycling MRI under low magnetic field stability and homogeneity conditions. Magn Reson Imaging 2022:S0730-725X(22)00008-X. [PMID: 35031443 DOI: 10.1016/j.mri.2022.01.008] [Reference Citation Analysis]
24 Halse ME. Perspectives for hyperpolarisation in compact NMR. TrAC Trends in Analytical Chemistry 2016;83:76-83. [DOI: 10.1016/j.trac.2016.05.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
25 Coffey AM, Feldman MA, Shchepin RV, Barskiy DA, Truong ML, Pham W, Chekmenev EY. High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7mT) following murine tail-vein injection. J Magn Reson 2017;281:246-52. [PMID: 28651245 DOI: 10.1016/j.jmr.2017.06.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
26 Coffey AM, Kovtunov KV, Barskiy DA, Koptyug IV, Shchepin RV, Waddell KW, He P, Groome KA, Best QA, Shi F, Goodson BM, Chekmenev EY. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids. Anal Chem 2014;86:9042-9. [PMID: 25162371 DOI: 10.1021/ac501638p] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
27 Gu M, Xie R, Xiao L. Two-Step Inversion Method for NMR Relaxometry Data Using Norm Smoothing and Artificial Fish Swarm Algorithm. Appl Magn Reson 2021;52:1615-34. [DOI: 10.1007/s00723-021-01403-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Gu M, Xie R, Jin G. A machine-learning based quantitative evaluation of the fluid components on T2-D spectrum. Marine and Petroleum Geology 2021;134:105353. [DOI: 10.1016/j.marpetgeo.2021.105353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lee RK, Griffith JF, Lau YY, Leung JH, Ng AW, Hung EH, Law SW. Diagnostic capability of low- versus high-field magnetic resonance imaging for lumbar degenerative disease. Spine (Phila Pa 1976) 2015;40:382-91. [PMID: 25584942 DOI: 10.1097/BRS.0000000000000774] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
30 Colell JF, Logan AW, Zhou Z, Shchepin RV, Barskiy DA, Ortiz GX Jr, Wang Q, Malcolmson SJ, Chekmenev EY, Warren WS, Theis T. Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange. J Phys Chem C Nanomater Interfaces 2017;121:6626-34. [PMID: 28392884 DOI: 10.1021/acs.jpcc.6b12097] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 17.4] [Reference Citation Analysis]
31 Truong ML, Theis T, Coffey AM, Shchepin RV, Waddell KW, Shi F, Goodson BM, Warren WS, Chekmenev EY. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH. J Phys Chem C Nanomater Interfaces 2015;119:8786-97. [PMID: 25960823 DOI: 10.1021/acs.jpcc.5b01799] [Cited by in Crossref: 140] [Cited by in F6Publishing: 126] [Article Influence: 20.0] [Reference Citation Analysis]
32 Joalland B, Theis T, Appelt S, Chekmenev EY. Background-Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation. Angew Chem Int Ed Engl 2021. [PMID: 34459080 DOI: 10.1002/anie.202108939] [Reference Citation Analysis]
33 Theis T, Ariyasingha NM, Shchepin RV, Lindale JR, Warren WS, Chekmenev EY. Quasi-Resonance Signal Amplification by Reversible Exchange. J Phys Chem Lett 2018;9:6136-42. [PMID: 30284835 DOI: 10.1021/acs.jpclett.8b02669] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
34 Shchepin RV, Barskiy DA, Coffey AM, Feldman MA, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Goodson BM, Koptyug IV, Chekmenev EY. Robust Imidazole‐ 15 N 2 Synthesis for High‐Resolution Low‐Field (0.05 T) 15 N Hyperpolarized NMR Spectroscopy. ChemistrySelect 2017;2:4478-83. [DOI: 10.1002/slct.201700718] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 4.4] [Reference Citation Analysis]
35 Vershovskii AK, Petrenko MV. Three-Level Approximation upon Calculation of Parameters of Optically Detected Magnetic Resonance under the Conditions of Strong Laser Pumping. Opt Spectrosc . [DOI: 10.1134/s0030400x21040275] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Shen K, Logan AWJ, Colell JFP, Bae J, Ortiz GX Jr, Theis T, Warren WS, Malcolmson SJ, Wang Q. Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long-Lived SABRE-Induced Hyperpolarization. Angew Chem Int Ed Engl 2017;56:12112-6. [PMID: 28664640 DOI: 10.1002/anie.201704970] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
37 Shchepin RV, Barskiy DA, Coffey AM, Goodson BM, Chekmenev EY. NMR Signal Amplification by Reversible Exchange of Sulfur-Heterocyclic Compounds Found In Petroleum. ChemistrySelect 2016;1:2552-5. [PMID: 27500206 DOI: 10.1002/slct.201600761] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
38 Kuzmin VV, Nacher PJ. Signal feedback applications in low-field NMR and MRI. J Magn Reson 2020;310:106622. [PMID: 31765970 DOI: 10.1016/j.jmr.2019.106622] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Wang J, Kreis F, Wright AJ, Hesketh RL, Levitt MH, Brindle KM. Dynamic 1 H imaging of hyperpolarized [1-13 C]lactate in vivo using a reverse INEPT experiment. Magn Reson Med 2018;79:741-7. [PMID: 28474393 DOI: 10.1002/mrm.26725] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
40 Logan AWJ, Theis T, Colell JFP, Warren WS, Malcolmson SJ. Hyperpolarization of Nitrogen‐15 Schiff Bases by Reversible Exchange Catalysis with para ‐Hydrogen. Chem Eur J 2016;22:10777-81. [DOI: 10.1002/chem.201602393] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
41 Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, Lau GKK, Leung GKK, Wu EX. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 2021;12:7238. [PMID: 34907181 DOI: 10.1038/s41467-021-27317-1] [Reference Citation Analysis]
42 Vergallo C, Ahmadi M, Mobasheri H, Dini L. Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS One 2014;9:e113530. [PMID: 25423171 DOI: 10.1371/journal.pone.0113530] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
43 Barskiy DA, Kovtunov KV, Koptyug IV, He P, Groome KA, Best QA, Shi F, Goodson BM, Shchepin RV, Truong ML, Coffey AM, Waddell KW, Chekmenev EY. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization. Chemphyschem 2014;15:4100-7. [PMID: 25367202 DOI: 10.1002/cphc.201402607] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 6.1] [Reference Citation Analysis]
44 Svyatova AI, Kovtunov KV, Koptyug IV. Magnetic resonance imaging of catalytically relevant processes. Reviews in Chemical Engineering 2021;37:3-29. [DOI: 10.1515/revce-2018-0035] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
45 Zhang Y, Guo Y, Kong X, Zeng P, Yin H, Wu J, He Y, Xu Z. Improving Local SNR of a Singe-channel 54.6 mT MRI System Using Additional LC-resonator. Journal of Magnetic Resonance 2022. [DOI: 10.1016/j.jmr.2022.107215] [Reference Citation Analysis]
46 Ge X, Fan Y, Li J, Wang Y, Deng S. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA). Journal of Magnetic Resonance 2015;251:71-83. [DOI: 10.1016/j.jmr.2014.11.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
47 Marzilger R, Schroll A, Bohm S, Arampatzis A. Muscle volume reconstruction from several short magnetic resonance imaging sequences. J Biomech 2019;84:269-73. [PMID: 30655082 DOI: 10.1016/j.jbiomech.2018.12.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
48 Barskiy DA, Salnikov OG, Romanov AS, Feldman MA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. NMR Spin-Lock Induced Crossing (SLIC) dispersion and long-lived spin states of gaseous propane at low magnetic field (0.05T). J Magn Reson 2017;276:78-85. [PMID: 28152435 DOI: 10.1016/j.jmr.2017.01.014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
49 Barskiy DA, Salnikov OG, Shchepin RV, Feldman MA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. NMR SLIC Sensing of Hydrogenation Reactions Using Parahydrogen in Low Magnetic Fields. J Phys Chem C Nanomater Interfaces 2016;120:29098-106. [PMID: 28066517 DOI: 10.1021/acs.jpcc.6b07555] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
50 Colell JFP, Emondts M, Logan AWJ, Shen K, Bae J, Shchepin RV, Ortiz GX Jr, Spannring P, Wang Q, Malcolmson SJ, Chekmenev EY, Feiters MC, Rutjes FPJT, Blümich B, Theis T, Warren WS. Direct Hyperpolarization of Nitrogen-15 in Aqueous Media with Parahydrogen in Reversible Exchange. J Am Chem Soc 2017;139:7761-7. [PMID: 28443329 DOI: 10.1021/jacs.7b00569] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 11.2] [Reference Citation Analysis]
51 Kovtunov KV, Barskiy DA, Coffey AM, Truong ML, Salnikov OG, Khudorozhkov AK, Inozemtseva EA, Prosvirin IP, Bukhtiyarov VI, Waddell KW, Chekmenev EY, Koptyug IV. High-resolution 3D proton MRI of hyperpolarized gas enabled by parahydrogen and Rh/TiO2 heterogeneous catalyst. Chemistry 2014;20:11636-9. [PMID: 24961814 DOI: 10.1002/chem.201403604] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 6.9] [Reference Citation Analysis]
52 Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021;22:1421-40. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Rudszuck T, Nirschl H, Guthausen G. Perspectives in process analytics using low field NMR. J Magn Reson 2021;323:106897. [PMID: 33518174 DOI: 10.1016/j.jmr.2020.106897] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Hansen BB, Ciochon UM, Trampedach CR, Christensen AF, Rasti Z, Boesen M. Grading lumbar disc degeneration: a comparison between low- and high-field MRI. Acta Radiol 2019;60:1636-42. [DOI: 10.1177/0284185119842472] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Shchepin RV, Chekmenev EY. Toward hyperpolarized molecular imaging of HIV: synthesis and longitudinal relaxation properties of (15) N-Azidothymidine. J Labelled Comp Radiopharm 2014;57:621-4. [PMID: 25156931 DOI: 10.1002/jlcr.3220] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
56 Nikolaou P, Goodson BM, Chekmenev EY. NMR hyperpolarization techniques for biomedicine. Chemistry 2015;21:3156-66. [PMID: 25470566 DOI: 10.1002/chem.201405253] [Cited by in Crossref: 179] [Cited by in F6Publishing: 156] [Article Influence: 22.4] [Reference Citation Analysis]
57 Gu M, Xie R, Jin G. A new quantitative evaluation method for fluid constituents with NMR T1-T2 spectra in shale reservoirs. Journal of Natural Gas Science and Engineering 2022;99:104412. [DOI: 10.1016/j.jngse.2022.104412] [Reference Citation Analysis]
58 Kovtunov KV, Truong ML, Barskiy DA, Salnikov OG, Bukhtiyarov VI, Coffey AM, Waddell KW, Koptyug IV, Chekmenev EY. Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen. J Phys Chem C Nanomater Interfaces 2014;118:28234-43. [PMID: 25506406 DOI: 10.1021/jp508719n] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 7.6] [Reference Citation Analysis]
59 Vershovskii AK, Petrenko MV. Methods of Parametric Resonance Excitation in the Scheme of an Optical Magnetometric Sensor. Tech Phys . [DOI: 10.1134/s106378422105025x] [Reference Citation Analysis]
60 Buckenmaier K, Rudolph M, Back C, Misztal T, Bommerich U, Fehling P, Koelle D, Kleiner R, Mayer HA, Scheffler K, Bernarding J, Plaumann M. SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange. Sci Rep 2017;7:13431. [PMID: 29044168 DOI: 10.1038/s41598-017-13757-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
61 Rovedo P, Knecht S, Bäumlisberger T, Cremer AL, Duckett SB, Mewis RE, Green GGR, Burns M, Rayner PJ, Leibfritz D, Korvink JG, Hennig J, Pütz G, von Elverfeldt D, Hövener J. Molecular MRI in the Earth’s Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water. J Phys Chem B 2016;120:5670-7. [DOI: 10.1021/acs.jpcb.6b02830] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
62 Gu M, Xie R, Jin G, Xu C, Wang S, Liu J, Wei H. Quantitative evaluation for fluid components on 2D NMR spectrum using Blind Source Separation. J Magn Reson 2021;332:107079. [PMID: 34638086 DOI: 10.1016/j.jmr.2021.107079] [Reference Citation Analysis]
63 Deoni SC, D’sa V, Volpe A, Beauchemin J, Croff JM, Elliott AJ, Pini N, Lucchini M, Fifer WP. Remote and at-home data collection: Considerations for the NIH HEALthy Brain and Cognitive Development (HBCD) study. Developmental Cognitive Neuroscience 2022;54:101059. [DOI: 10.1016/j.dcn.2022.101059] [Reference Citation Analysis]