BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Flouri D, Lesnic D, Sourbron SP. Fitting the two-compartment model in DCE-MRI by linear inversion. Magn Reson Med 2016;76:998-1006. [PMID: 26376011 DOI: 10.1002/mrm.25991] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Ahmed Z, Levesque IR. An extended reference region model for DCE-MRI that accounts for plasma volume. NMR Biomed 2018;31:e3924. [PMID: 29745982 DOI: 10.1002/nbm.3924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Dikaios N. Stochastic Gradient Langevin dynamics for joint parameterization of tracer kinetic models, input functions, and T1 relaxation-times from undersampled k-space DCE-MRI. Medical Image Analysis 2020;62:101690. [DOI: 10.1016/j.media.2020.101690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Zöllner FG, Daab M, Sourbron SP, Schad LR, Schoenberg SO, Weisser G. An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited. BMC Med Imaging 2016;16:7. [PMID: 26767969 DOI: 10.1186/s12880-016-0109-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
4 Kallehauge JF, Sourbron S, Irving B, Tanderup K, Schnabel JA, Chappell MA. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI. Magn Reson Med 2017;77:2414-23. [PMID: 27605429 DOI: 10.1002/mrm.26324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
5 Giménez-Alventosa V, Segrelles JD, Moltó G, Roca-Sogorb M. APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools. Methods Inf Med 2020;59:e33-45. [PMID: 32777825 DOI: 10.1055/s-0040-1712460] [Reference Citation Analysis]
6 Flouri D, Owen D, Aughwane R, Mufti N, Maksym K, Sokolska M, Kendall G, Bainbridge A, Atkinson D, Vercauteren T, Ourselin S, David AL, Melbourne A. Improved fetal blood oxygenation and placental estimated measurements of diffusion-weighted MRI using data-driven Bayesian modeling. Magn Reson Med 2020;83:2160-72. [PMID: 31742785 DOI: 10.1002/mrm.28075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
7 Garpebring A, Löfstedt T. Parameter estimation using weighted total least squares in the two-compartment exchange model. Magn Reson Med 2018;79:561-7. [PMID: 28349618 DOI: 10.1002/mrm.26677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
8 Melbourne A. On the use of multicompartment models of diffusion and relaxation for placental imaging. Placenta 2021;112:197-203. [PMID: 34392172 DOI: 10.1016/j.placenta.2021.07.302] [Reference Citation Analysis]
9 Kargar S, Borisch EA, Froemming AT, Kawashima A, Mynderse LA, Stinson EG, Trzasko JD, Riederer SJ. Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate. Magn Reson Imaging 2018;48:50-61. [PMID: 29278764 DOI: 10.1016/j.mri.2017.12.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
10 Guo Y, Lingala SG, Bliesener Y, Lebel RM, Zhu Y, Nayak KS. Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint. Magn Reson Med 2018;79:2804-15. [PMID: 28905411 DOI: 10.1002/mrm.26904] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
11 Rotkopf LT, Zhang KS, Tavakoli AA, Bonekamp D, Ziener CH, Schlemmer HP. Quantitative Analysis of DCE and DSC-MRI: From Kinetic Modeling to Deep Learning. Rofo 2022. [PMID: 35211930 DOI: 10.1055/a-1762-5854] [Reference Citation Analysis]
12 Ahmed Z, Levesque IR. Pharmacokinetic modeling of dynamic contrast-enhanced MRI using a reference region and input function tail. Magn Reson Med 2020;83:286-98. [PMID: 31393033 DOI: 10.1002/mrm.27913] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Flouri D, Lesnic D, Chrysochou C, Parikh J, Thelwall P, Sheerin N, Kalra PA, Buckley DL, Sourbron SP. Motion correction of free-breathing magnetic resonance renography using model-driven registration. MAGMA 2021. [PMID: 34160718 DOI: 10.1007/s10334-021-00936-x] [Reference Citation Analysis]
14 Jafari R, Chhabra S, Prince MR, Wang Y, Spincemaille P. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping. Magn Reson Med 2018;79:2415-21. [PMID: 28833534 DOI: 10.1002/mrm.26888] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Chen J, Hagiwara M, Givi B, Schmidt B, Liu C, Chen Q, Logan J, Mikheev A, Rusinek H, Kim SG. Assessment of metastatic lymph nodes in head and neck squamous cell carcinomas using simultaneous 18F-FDG-PET and MRI. Sci Rep 2020;10:20764. [PMID: 33247166 DOI: 10.1038/s41598-020-77740-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Alosaimi M, Lesnic D, Niesen J. Reconstruction of the thermal properties in a wave-type model of bio-heat transfer. HFF 2020;30:5143-67. [DOI: 10.1108/hff-10-2019-0776] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]