BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30:1259-1267. [PMID: 19938038 DOI: 10.1002/jmri.21969] [Cited by in Crossref: 343] [Cited by in F6Publishing: 276] [Article Influence: 31.2] [Reference Citation Analysis]
Number Citing Articles
1 Unruh C, Van Bavel N, Anikovskiy M, Prenner EJ. Benefits and Detriments of Gadolinium from Medical Advances to Health and Ecological Risks. Molecules 2020;25:E5762. [PMID: 33297578 DOI: 10.3390/molecules25235762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Henig J, Tóth É, Engelmann J, Gottschalk S, Mayer HA. Macrocyclic Gd 3+ Chelates Attached to a Silsesquioxane Core as Potential Magnetic Resonance Imaging Contrast Agents: Synthesis, Physicochemical Characterization, and Stability Studies. Inorg Chem 2010;49:6124-38. [DOI: 10.1021/ic1007395] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 4.2] [Reference Citation Analysis]
3 Yousaf MZ, Yu J, Hou Y, Gao S. Magnetic nanoparticle-based cancer nanodiagnostics. Chinese Phys B 2013;22:058702. [DOI: 10.1088/1674-1056/22/5/058702] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
4 Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017;5:5714-25. [DOI: 10.1039/c7tb01241a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
5 Ritchie J, Chrysochou C, Kalra PA. Contemporary management of atherosclerotic renovascular disease: Before and after ASTRAL: ARVD before and after ASTRAL. Nephrology 2011;16:457-67. [DOI: 10.1111/j.1440-1797.2011.01474.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
6 Daire J, Leporq B, Vilgrain V, Van Beers BE, Schmidt S, Pastor CM. Liver Perfusion Modifies Gd-DTPA and Gd-BOPTA Hepatocyte Concentrations Through Transfer Clearances Across Sinusoidal Membranes. Eur J Drug Metab Pharmacokinet 2017;42:657-67. [DOI: 10.1007/s13318-016-0382-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kim H. Modification of population based arterial input function to incorporate individual variation. Magn Reson Imaging 2018;45:66-71. [PMID: 28958876 DOI: 10.1016/j.mri.2017.09.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
8 Do C, Barnes JL, Tan C, Wagner B. Type of MRI contrast, tissue gadolinium, and fibrosis. Am J Physiol Renal Physiol 2014;307:F844-55. [PMID: 25100280 DOI: 10.1152/ajprenal.00379.2014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
9 Mallio CA, Quattrocchi CC, Rovira À, Parizel PM. Gadolinium Deposition Safety: Seeking the Patient's Perspective. AJNR Am J Neuroradiol 2020;41:944-6. [PMID: 32381539 DOI: 10.3174/ajnr.A6586] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Şen Karaman D, Desai D, Zhang J, Tadayon S, Unal G, Teuho J, Sarfraz J, Smått J, Gu H, Näreoja T, Rosenholm JM. Modulation of the structural properties of mesoporous silica nanoparticles to enhance the T 1 -weighted MR imaging capability. J Mater Chem B 2016;4:1720-32. [DOI: 10.1039/c5tb02371h] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Anemone A, Consolino L, Longo DL. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent. Eur Radiol 2017;27:2170-9. [DOI: 10.1007/s00330-016-4552-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
12 Rahatli FK, Donmez FY, Kibaroglu S, Kesim C, Haberal KM, Turnaoglu H, Agildere AM. Does renal function affect gadolinium deposition in the brain? Eur J Radiol 2018;104:33-7. [PMID: 29857863 DOI: 10.1016/j.ejrad.2018.04.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
13 Huang XX, Jiang RH, Xu XQ, Zu QQ, Wu FY, Liu S, Shi HB. Ischemic Stroke Increased Gadolinium Deposition in the Brain and Aggravated Astrocyte Injury After Gadolinium-Based Contrast Agent Administration: Linear Versus Macrocyclic Agents. J Magn Reson Imaging 2021;53:1282-92. [PMID: 33555617 DOI: 10.1002/jmri.27407] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lee SM, Song Y, Hong BJ, MacRenaris KW, Mastarone DJ, O'Halloran TV, Meade TJ, Nguyen ST. Modular polymer-caged nanobins as a theranostic platform with enhanced magnetic resonance relaxivity and pH-responsive drug release. Angew Chem Int Ed Engl 2010;49:9960-4. [PMID: 21082634 DOI: 10.1002/anie.201004867] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 4.6] [Reference Citation Analysis]
15 Veldhoen S, Sauer A, Gassenmaier T, Petritsch B, Herz S, Blanke P, Derlin T, Bley TA, Wirth C. Contrast-enhanced voiding urosonography phantom study: intravenous iodinated and gadolinium-based contrast agents may cause false-negative results in assessment of vesicoureteral reflux in children. Pediatr Radiol. 2015;45:862-871. [PMID: 25655368 DOI: 10.1007/s00247-014-3243-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gale EM, Caravan P, Rao AG, Mcdonald RJ, Winfeld M, Fleck RJ, Gee MS. Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol 2017;47:507-21. [DOI: 10.1007/s00247-017-3806-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
17 Taheri S, Shah NJ, Rosenberg GA. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2016;34:1034-40. [PMID: 27109487 DOI: 10.1016/j.mri.2016.04.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
18 Tsuchiya N, van Beek EJ, Ohno Y, Hatabu H, Kauczor HU, Swift A, Vogel-Claussen J, Biederer J, Wild J, Wielpütz MO, Schiebler ML. Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: A review from the international workshop for pulmonary functional imaging. World J Radiol 2018;10:52-64. [PMID: 29988845 DOI: 10.4329/wjr.v10.i6.52] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
19 Rigaux G, Roullin VG, Cadiou C, Portefaix C, Van Gulick L, Bœuf G, Andry MC, Hoeffel C, Vander Elst L, Laurent S, Muller R, Molinari M, Chuburu F. A new magnetic resonance imaging contrast agent loaded into poly(lacide-co-glycolide) nanoparticles for long-term detection of tumors. Nanotechnology 2014;25:445103. [DOI: 10.1088/0957-4484/25/44/445103] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
20 Adams LC, Brangsch J, Reimann C, Kaufmann JO, Nowak K, Buchholz R, Karst U, Botnar RM, Hamm B, Makowski MR. Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin-binding probe. Sci Rep 2020;10:3231. [PMID: 32094414 DOI: 10.1038/s41598-020-59842-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
21 Kirchin MA, Lorusso V, Pirovano G. Compensatory biliary and urinary excretion of gadobenate ion after administration of gadobenate dimeglumine (MultiHance(®)) in cases of impaired hepatic or renal function: a mechanism that may aid in the prevention of nephrogenic systemic fibrosis? Br J Radiol 2015;88:20140526. [PMID: 25651409 DOI: 10.1259/bjr.20140526] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
22 Chan M, Lux J, Nishimura T, Akiyoshi K, Almutairi A. Long-Lasting and Efficient Tumor Imaging Using a High Relaxivity Polysaccharide Nanogel Magnetic Resonance Imaging Contrast Agent. Biomacromolecules 2015;16:2964-71. [DOI: 10.1021/acs.biomac.5b00867] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
23 Gheuens E, Daelemans R, Mesens S. Dialysability of Gadoteric Acid in Patients With End-Stage Renal Disease Undergoing Hemodialysis: . Investigative Radiology 2014;49:505-8. [DOI: 10.1097/rli.0000000000000045] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
24 Lee JY, Park JE, Kim HS, Kim SO, Oh JY, Shim WH, Jung SC, Choi CG, Kim SJ. Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: Multifactorial analysis in 385 patients. PLoS One 2017;12:e0183916. [PMID: 28859167 DOI: 10.1371/journal.pone.0183916] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
25 Hachani R, Birchall MA, Lowdell MW, Kasparis G, Tung LD, Manshian BB, Soenen SJ, Gsell W, Himmelreich U, Gharagouzloo CA, Sridhar S, Thanh NTK. Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging. Sci Rep 2017;7:7850. [PMID: 28798327 DOI: 10.1038/s41598-017-08092-w] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
26 Mignani S, Rodrigues J, Tomas H, Caminade A, Laurent R, Shi X, Majoral J. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater 2018;61:1367-86. [DOI: 10.1007/s40843-018-9244-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
27 Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. Contrast Media Mol Imaging 2019;2019:9498173. [PMID: 31819739 DOI: 10.1155/2019/9498173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Loomis K, Mcneeley K, Bellamkonda RV. Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter 2011;7:839-56. [DOI: 10.1039/c0sm00534g] [Cited by in Crossref: 104] [Cited by in F6Publishing: 5] [Article Influence: 10.4] [Reference Citation Analysis]
29 Baek AR, Kim H, Park S, Lee GH, Kang HJ, Jung J, Park J, Ryeom H, Kim T, Chang Y. Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-1,4,7-trisacetic Acid (DO3A)–Ethoxybenzyl (EOB) Conjugate as a New Macrocyclic Hepatobiliary MRI Contrast Agent. J Med Chem 2017;60:4861-8. [DOI: 10.1021/acs.jmedchem.7b00060] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Chazen JL, Talbott JF, Lantos JE, Dillon WP. MR myelography for identification of spinal CSF leak in spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2014;35:2007-12. [PMID: 24852289 DOI: 10.3174/ajnr.A3975] [Cited by in Crossref: 46] [Cited by in F6Publishing: 7] [Article Influence: 6.6] [Reference Citation Analysis]
31 Richardson OC, Scott ML, Tanner SF, Waterton JC, Buckley DL. Overcoming the low relaxivity of gadofosveset at high field with spin locking. Magn Reson Med 2012;68:1234-8. [PMID: 22161901 DOI: 10.1002/mrm.23316] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
32 Patel A, Zolyan A, Itrat A. Long-Term Sequela of Intrathecal Gadolinium Extravasation: Symptoms Mimicking Post-concussive Syndrome. Cureus 2021;13:e14084. [PMID: 33907635 DOI: 10.7759/cureus.14084] [Reference Citation Analysis]
33 Anderson MA, Harrington SG, Kozak BM, Gee MS. Strategies to Reduce the Use of Gadolinium-Based Contrast Agents for Abdominal MRI in Children. American Journal of Roentgenology 2020;214:1054-64. [DOI: 10.2214/ajr.19.22232] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
34 Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016;8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
35 Sims JD, Hwang JY, Wagner S, Alonso-Valenteen F, Hanson C, Taguiam JM, Polo R, Harutyunyan I, Karapetyan G, Sorasaenee K, Ibrahim A, Marban E, Moats R, Gray HB, Gross Z, Medina-Kauwe LK. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity. J Control Release 2015;217:92-101. [PMID: 26334483 DOI: 10.1016/j.jconrel.2015.08.046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
36 Kneepkens E, Heijman E, Keupp J, Weiss S, Nicolay K, Grüll H. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2017;52:620-30. [PMID: 28598900 DOI: 10.1097/RLI.0000000000000392] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
37 El Hamrani D, Vives V, Buchholz R, Même W, Factor C, Fingerhut S, Sperling M, Karst U, Robert P, Même S. Effect of Long-Term Retention of Gadolinium on Metabolism of Deep Cerebellar Nuclei After Repeated Injections of Gadodiamide in Rats. Invest Radiol 2020;55:120-8. [PMID: 31876627 DOI: 10.1097/RLI.0000000000000621] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
38 Timms L, Zhou T, Lyu Y, Qiao J, Mishra V, Lahoud RM, Jayaraman GV, Allegretti AS, Drew D, Seethamraju RT, Harisinghani M, Sridhar S. Ferumoxytol-enhanced ultrashort TE MRA and quantitative morphometry of the human kidney vasculature. Abdom Radiol (NY) 2021;46:3288-300. [PMID: 33666735 DOI: 10.1007/s00261-021-02984-2] [Reference Citation Analysis]
39 Shan L, Chopra A, Leung K, Eckelman WC, Menkens AE. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-1122-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
40 Schlatt L, Köhrer A, Factor C, Robert P, Rasschaert M, Sperling M, Karst U. Mild Dissolution/Recomplexation Strategy for Speciation Analysis of Gadolinium from MR Contrast Agents in Bone Tissues by Means of HPLC-ICP-MS. Anal Chem 2021;93:11398-405. [PMID: 34387072 DOI: 10.1021/acs.analchem.1c01100] [Reference Citation Analysis]
41 Baroni S, Ruggiero MR, Aime S, Geninatti Crich S. Exploring the tumour extracellular matrix by in vivo Fast Field Cycling relaxometry after the administration of a Gadolinium-based MRI contrast agent. Magn Reson Chem 2019;57:845-51. [DOI: 10.1002/mrc.4837] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
42 Hwang Y, Teoh JY, Kim SH, Kim J, Jeon S, Kim HC, Jung YS, Kim H, Choi JW, Yoo D. Simple Host-Guest Assembly for High-Resolution Magnetic Resonance Imaging of Microvasculature. ACS Appl Mater Interfaces 2021;13:27945-54. [PMID: 34110788 DOI: 10.1021/acsami.1c06509] [Reference Citation Analysis]
43 Erdene K, Nakajima T, Kameo S, Khairinisa MA, Lamid-ochir O, Tumenjargal A, Koibuchi N, Koyama H, Tsushima Y. Organ retention of gadolinium in mother and pup mice: effect of pregnancy and type of gadolinium-based contrast agents. Jpn J Radiol 2017;35:568-73. [DOI: 10.1007/s11604-017-0667-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
44 McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology. 2015;275:772-782. [PMID: 25742194 DOI: 10.1148/radiol.15150025] [Cited by in Crossref: 827] [Cited by in F6Publishing: 664] [Article Influence: 137.8] [Reference Citation Analysis]
45 Goswami LN, Cai Q, Ma L, Jalisatgi SS, Hawthorne MF. Synthesis, relaxation properties and in vivo assessment of a carborane-GdDOTA-monoamide conjugate as an MRI blood pool contrast agent. Org Biomol Chem 2015;13:8912-8. [PMID: 26204958 DOI: 10.1039/c5ob00876j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
46 Vibhute SM, Engelmann J, Verbić T, Maier ME, Logothetis NK, Angelovski G. Synthesis and characterization of pH-sensitive, biotinylated MRI contrast agents and their conjugates with avidin. Org Biomol Chem 2013;11:1294-305. [PMID: 23223612 DOI: 10.1039/c2ob26555a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
47 Kim SJ, Kim KA. Safety issues and updates under MR environments. Eur J Radiol 2017;89:7-13. [PMID: 28267552 DOI: 10.1016/j.ejrad.2017.01.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
48 Yokoo T, Wolfson T, Iwaisako K, Peterson MR, Mani H, Goodman Z, Changchien C, Middleton MS, Gamst AC, Mazhar SM, Kono Y, Ho SB, Sirlin CB. Evaluation of Liver Fibrosis Using Texture Analysis on Combined-Contrast-Enhanced Magnetic Resonance Images at 3.0T. Biomed Res Int 2015;2015:387653. [PMID: 26421287 DOI: 10.1155/2015/387653] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
49 McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018;289:517-34. [PMID: 30204075 DOI: 10.1148/radiol.2018181151] [Cited by in Crossref: 121] [Cited by in F6Publishing: 79] [Article Influence: 40.3] [Reference Citation Analysis]
50 Kim HK, Lee GH, Chang Y. Gadolinium as an MRI contrast agent. Future Med Chem 2018;10:639-61. [PMID: 29412006 DOI: 10.4155/fmc-2017-0215] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
51 Kanakia S, Toussaint J, Hoang DM, Mullick Chowdhury S, Lee S, Shroyer KR, Moore W, Wadghiri YZ, Sitharaman B. Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals. Sci Rep 2015;5:17182. [PMID: 26625867 DOI: 10.1038/srep17182] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
52 Clough TJ, Jiang L, Wong KL, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun 2019;10:1420. [PMID: 30926784 DOI: 10.1038/s41467-019-09342-3] [Cited by in Crossref: 90] [Cited by in F6Publishing: 47] [Article Influence: 45.0] [Reference Citation Analysis]
53 Barbieri S, Schroeder C, Froehlich JM, Pasch A, Thoeny HC. High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification. Contrast Media Mol Imaging 2016;11:245-50. [PMID: 26929131 DOI: 10.1002/cmmi.1683] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
54 Liu ZJ, Song XX, Xu XZ, Tang Q. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging. Nanotechnology 2014;25:155101. [PMID: 24642699 DOI: 10.1088/0957-4484/25/15/155101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
55 de Vries A, Moonen R, Yildirim M, Langereis S, Lamerichs R, Pikkemaat JA, Baroni S, Terreno E, Nicolay K, Strijkers GJ, Grüll H. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. Contrast Media Mol Imaging 2014;9:83-91. [PMID: 24470297 DOI: 10.1002/cmmi.1541] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
56 Ariyani W, Iwasaki T, Miyazaki W, Khongorzul E, Nakajima T, Kameo S, Koyama H, Tsushima Y, Koibuchi N. Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis. Front Endocrinol (Lausanne) 2016;7:115. [PMID: 27617003 DOI: 10.3389/fendo.2016.00115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
57 Pagoto A, Tripepi M, Stefania R, Lanzardo S, Livio Longo D, Garello F, Porpiglia F, Manfredi M, Aime S, Terreno E. An efficient MRI agent targeting extracellular markers in prostate adenocarcinoma. Magn Reson Med 2018;81:1935-46. [DOI: 10.1002/mrm.27494] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Othman M, Desmaële D, Couvreur P, Vander Elst L, Laurent S, Muller RN, Bourgaux C, Morvan E, Pouget T, Lepêtre-mouelhi S, Durand P, Gref R. Synthesis and physicochemical characterization of new squalenoyl amphiphilic gadolinium complexes as nanoparticle contrast agents. Org Biomol Chem 2011;9:4367. [DOI: 10.1039/c1ob00015b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
59 Savarino E, Chianca V, Bodini G, Albano D, Messina C, Tontini GE, Sconfienza LM. Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: Which implications in patients with Crohn’s disease? Digestive and Liver Disease 2017;49:728-30. [DOI: 10.1016/j.dld.2017.04.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
60 Lu Y, Liu P, Fu P, Chen Y, Nan D, Yang X. Comparison of the DWI and Gd-EOB-DTPA-enhanced MRI on assessing the hepatic ischemia and reperfusion injury after partial hepatectomy. Biomed Pharmacother. 2017;86:118-126. [PMID: 27951418 DOI: 10.1016/j.biopha.2016.11.123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
61 Baranyai Z, Brücher E, Uggeri F, Maiocchi A, Tóth I, Andrási M, Gáspár A, Zékány L, Aime S. The Role of Equilibrium and Kinetic Properties in the Dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to Physiological Conditions. Chem Eur J 2015;21:4789-99. [DOI: 10.1002/chem.201405967] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
62 Pan Y, Yang J, Fang Y, Zheng J, Song R, Yi C. One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. J Mater Chem B 2017;5:92-101. [DOI: 10.1039/c6tb02115h] [Cited by in Crossref: 50] [Cited by in F6Publishing: 2] [Article Influence: 12.5] [Reference Citation Analysis]
63 Mallio CA, Messina L, Parillo M, Lo Vullo G, Beomonte Zobel B, Parizel PM, Quattrocchi CC. Anterior pituitary gland T1 signal intensity is influenced by time delay after injection of gadodiamide. Sci Rep 2020;10:14967. [PMID: 32917963 DOI: 10.1038/s41598-020-71981-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Gkagkanasiou M, Ploussi A, Gazouli M, Efstathopoulos EP. USPIO-Enhanced MRI Neuroimaging: A Review. J Neuroimaging 2016;26:161-8. [PMID: 26932522 DOI: 10.1111/jon.12318] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
65 Tsitovich PB, Burns PJ, Mckay AM, Morrow JR. Redox-activated MRI contrast agents based on lanthanide and transition metal ions. Journal of Inorganic Biochemistry 2014;133:143-54. [DOI: 10.1016/j.jinorgbio.2014.01.016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 40] [Article Influence: 8.4] [Reference Citation Analysis]
66 Chan M, Almutairi A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Mater Horiz 2016;3:21-40. [PMID: 27398218 DOI: 10.1039/c5mh00161g] [Cited by in Crossref: 30] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
67 Jackson AW, Chandrasekharan P, Ramasamy B, Goggi J, Chuang KH, He T, Robins EG. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. Biomacromolecules 2016;17:3902-10. [PMID: 27936729 DOI: 10.1021/acs.biomac.6b01256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
68 Chow AM, Tan M, Gao DS, Fan SJ, Cheung JS, Man K, Lu ZR, Wu EX. Molecular MRI of liver fibrosis by a peptide-targeted contrast agent in an experimental mouse model. Invest Radiol 2013;48:46-54. [PMID: 23192162 DOI: 10.1097/RLI.0b013e3182749c0b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
69 Fries P, Morelli JN, Lux F, Tillement O, Schneider G, Buecker A. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength: Contrast-enhanced ultra-high field MRI. WIREs Nanomed Nanobiotechnol 2014;6:559-73. [DOI: 10.1002/wnan.1291] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
70 Brücher E, Tircsó G, Baranyai Z, Kovács Z, Sherry AD. Stability and Toxicity of Contrast Agents. In: Merbach A, Helm L, Tóth É, editors. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Chichester: John Wiley & Sons, Ltd; 2013. pp. 157-208. [DOI: 10.1002/9781118503652.ch4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
71 Charlton JR, Pearl VM, Denotti AR, Lee JB, Swaminathan S, Scindia YM, Charlton NP, Baldelomar EJ, Beeman SC, Bennett KM. Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents. Nanomedicine 2016;12:1735-45. [PMID: 27071333 DOI: 10.1016/j.nano.2016.03.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
72 Salarian M, Turaga RC, Xue S, Nezafati M, Hekmatyar K, Qiao J, Zhang Y, Tan S, Ibhagui OY, Hai Y, Li J, Mukkavilli R, Sharma M, Mittal P, Min X, Keilholz S, Yu L, Qin G, Farris AB, Liu ZR, Yang JJ. Early detection and staging of chronic liver diseases with a protein MRI contrast agent. Nat Commun 2019;10:4777. [PMID: 31664017 DOI: 10.1038/s41467-019-11984-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
73 Böll K, Zimpel A, Dietrich O, Wuttke S, Peller M. Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron‐Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. Adv Therap 2020;3:1900126. [DOI: 10.1002/adtp.201900126] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
74 Mastrogiacomo S, Kownacka AE, Dou W, Burke BP, de Rosales RTM, Heerschap A, Jansen JA, Archibald SJ, Walboomers XF. Bisphosphonate Functionalized Gadolinium Oxide Nanoparticles Allow Long-Term MRI/CT Multimodal Imaging of Calcium Phosphate Bone Cement. Adv Healthc Mater 2018;7:e1800202. [PMID: 30118580 DOI: 10.1002/adhm.201800202] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
75 Wen Y, Weinsaft JW, Nguyen TD, Liu Z, Horn EM, Singh H, Kochav J, Eskreis-Winkler S, Deh K, Kim J, Prince MR, Wang Y, Spincemaille P. Free breathing three-dimensional cardiac quantitative susceptibility mapping for differential cardiac chamber blood oxygenation - initial validation in patients with cardiovascular disease inclusive of direct comparison to invasive catheterization. J Cardiovasc Magn Reson 2019;21:70. [PMID: 31735165 DOI: 10.1186/s12968-019-0579-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
76 Runge VM. Dechelation (Transmetalation): Consequences and Safety Concerns With the Linear Gadolinium-Based Contrast Agents, In View of Recent Health Care Rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Invest Radiol 2018;53:571-8. [PMID: 30130320 DOI: 10.1097/RLI.0000000000000507] [Cited by in Crossref: 34] [Cited by in F6Publishing: 2] [Article Influence: 17.0] [Reference Citation Analysis]
77 Tircsó G, Tircsóné Benyó E, Garda Z, Singh J, Trokowski R, Brücher E, Sherry AD, Tóth É, Kovács Z. Comparison of the equilibrium, kinetic and water exchange properties of some metal ion-DOTA and DOTA-bis(amide) complexes. J Inorg Biochem 2020;206:111042. [PMID: 32146160 DOI: 10.1016/j.jinorgbio.2020.111042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
78 van der Velden BHM, van Rijssel MJ, Lena B, Philippens MEP, Loo CE, Ragusi MAA, Elias SG, Sutton EJ, Morris EA, Bartels LW, Gilhuijs KGA. Harmonization of Quantitative Parenchymal Enhancement in T1 -Weighted Breast MRI. J Magn Reson Imaging 2020;52:1374-82. [PMID: 32491246 DOI: 10.1002/jmri.27244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Frenzel T, Ulbrich HF, Pietsch H. The Macrocyclic Gadolinium-Based Contrast Agents Gadobutrol and Gadoteridol Show Similar Elimination Kinetics From the Brain After Repeated Intravenous Injections in Rabbits. Invest Radiol 2021;56:341-7. [PMID: 33259443 DOI: 10.1097/RLI.0000000000000749] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Pasquini L, Napolitano A, Visconti E, Longo D, Romano A, Tomà P, Rossi Espagnet MC. Gadolinium-Based Contrast Agent-Related Toxicities. CNS Drugs 2018;32:229-40. [PMID: 29508245 DOI: 10.1007/s40263-018-0500-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
81 Baur ADJ, Schwabe J, Rogasch J, Maxeiner A, Penzkofer T, Stephan C, Rudl M, Hamm B, Jung EM, Fischer T. A direct comparison of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer detection and prediction of aggressiveness. Eur Radiol 2018;28:1949-60. [PMID: 29238867 DOI: 10.1007/s00330-017-5192-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
82 Chen HL, Hsu FT, Kao YJ, Liu HS, Huang WZ, Lu CF, Tsai PH, Ali AAA, Lee GA, Chen RJ, Chen CY. Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. J Nanobiotechnology 2017;15:86. [PMID: 29166921 DOI: 10.1186/s12951-017-0313-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
83 Cocozza S, Pontillo G, Lanzillo R, Russo C, Petracca M, Di Stasi M, Paolella C, Vola EA, Criscuolo C, Moccia M, Lamberti A, Monti S, Brescia Morra V, Elefante A, Palma G, Tedeschi E, Brunetti A. MRI features suggestive of gadolinium retention do not correlate with Expanded Disability Status Scale worsening in Multiple Sclerosis. Neuroradiology 2019;61:155-62. [DOI: 10.1007/s00234-018-02150-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 12.5] [Reference Citation Analysis]
84 Di Gregorio E, Lattuada L, Maiocchi A, Aime S, Ferrauto G, Gianolio E. Supramolecular adducts between macrocyclic Gd(iii) complexes and polyaromatic systems: a route to enhance the relaxivity through the formation of hydrophobic interactions. Chem Sci 2020;12:1368-77. [PMID: 34163900 DOI: 10.1039/d0sc03504a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Chin DD, Poon C, Trac N, Wang J, Cook J, Joo J, Jiang Z, Maria NSS, Jacobs RE, Chung EJ. Collagenase-Cleavable Peptide Amphiphile Micelles as a Novel Theranostic Strategy in Atherosclerosis. Adv Ther (Weinh) 2020;3:1900196. [PMID: 34295964 DOI: 10.1002/adtp.201900196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
86 Robic C, Port M, Rousseaux O, Louguet S, Fretellier N, Catoen S, Factor C, Le Greneur S, Medina C, Bourrinet P, Raynal I, Idée JM, Corot C. Physicochemical and Pharmacokinetic Profiles of Gadopiclenol: A New Macrocyclic Gadolinium Chelate With High T1 Relaxivity. Invest Radiol 2019;54:475-84. [PMID: 30973459 DOI: 10.1097/RLI.0000000000000563] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 17.0] [Reference Citation Analysis]
87 Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019;119:957-1057. [PMID: 30350585 DOI: 10.1021/acs.chemrev.8b00363] [Cited by in Crossref: 389] [Cited by in F6Publishing: 258] [Article Influence: 129.7] [Reference Citation Analysis]
88 Prybylski JP, Maxwell E, Coste Sanchez C, Jay M. Gadolinium deposition in the brain: Lessons learned from other metals known to cross the blood-brain barrier. Magn Reson Imaging 2016;34:1366-72. [PMID: 27580521 DOI: 10.1016/j.mri.2016.08.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
89 Cheng W, Ganesh T, Martinez F, Lam J, Yoon H, Macgregor RB, Scholl TJ, Cheng HM, Zhang X. Binding of a dimeric manganese porphyrin to serum albumin: towards a gadolinium-free blood-pool T 1 MRI contrast agent. J Biol Inorg Chem 2014;19:229-35. [DOI: 10.1007/s00775-013-1073-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
90 Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, Xiao Z, Stueber D, Avendano C, Decuzzi P, Pautler RG, Colvin VL. 2D Gadolinium Oxide Nanoplates as T1 Magnetic Resonance Imaging Contrast Agents. Adv Healthc Mater 2021;10:e2001780. [PMID: 33882196 DOI: 10.1002/adhm.202001780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Robert P, Frenzel T, Factor C, Jost G, Rasschaert M, Schuetz G, Fretellier N, Boyken J, Idée JM, Pietsch H. Methodological Aspects for Preclinical Evaluation of Gadolinium Presence in Brain Tissue: Critical Appraisal and Suggestions for Harmonization-A Joint Initiative. Invest Radiol 2018;53:499-517. [PMID: 29659381 DOI: 10.1097/RLI.0000000000000467] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
92 Wang S, Lin J, Wang Z, Zhou Z, Bai R, Lu N, Liu Y, Fu X, Jacobson O, Fan W, Qu J, Chen S, Wang T, Huang P, Chen X. Core-Satellite Polydopamine-Gadolinium-Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. Adv Mater 2017;29. [PMID: 28703340 DOI: 10.1002/adma.201701013] [Cited by in Crossref: 127] [Cited by in F6Publishing: 102] [Article Influence: 31.8] [Reference Citation Analysis]
93 Kader A, Brangsch J, Kaufmann JO, Zhao J, Mangarova DB, Moeckel J, Adams LC, Sack I, Taupitz M, Hamm B, Makowski MR. Molecular MR Imaging of Prostate Cancer. Biomedicines 2020;9:1. [PMID: 33375045 DOI: 10.3390/biomedicines9010001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Babič A, Vorobiev V, Trefalt G, Crowe LA, Helm L, Vallée J, Allémann E. MRI micelles self-assembled from synthetic gadolinium-based nano building blocks. Chem Commun 2019;55:945-8. [DOI: 10.1039/c8cc08875f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
95 Jin M, Yu D, Geraldes CFGC, Williams GR, Bligh SWA. Theranostic Fibers for Simultaneous Imaging and Drug Delivery. Mol Pharmaceutics 2016;13:2457-65. [DOI: 10.1021/acs.molpharmaceut.6b00197] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 6.6] [Reference Citation Analysis]
96 Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, Takeshita K, Furui S. High Signal Intensity in Dentate Nucleus on Unenhanced T1-weighted MR Images: Association with Linear versus Macrocyclic Gadolinium Chelate Administration. Radiology. 2015;275:803-809. [PMID: 25633504 DOI: 10.1148/radiol.14140364] [Cited by in Crossref: 333] [Cited by in F6Publishing: 279] [Article Influence: 55.5] [Reference Citation Analysis]
97 de Schellenberger AA, Hauptmann R, Millward JM, Schellenberger E, Kobayashi Y, Taupitz M, Infante-Duarte C, Schnorr J, Wagner S. Synthesis of europium-doped VSOP, customized enhancer solution and improved microscopy fluorescence methodology for unambiguous histological detection. J Nanobiotechnology 2017;15:71. [PMID: 29017510 DOI: 10.1186/s12951-017-0301-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 van Zandwijk JK, Simonis FFJ, Heslinga FG, Hofmeijer EIS, Geelkerken RH, Ten Haken B. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 2021;16:e0256252. [PMID: 34403442 DOI: 10.1371/journal.pone.0256252] [Reference Citation Analysis]
99 Do QN, Ratnakar JS, Kovács Z, Sherry AD. Redox- and hypoxia-responsive MRI contrast agents. ChemMedChem 2014;9:1116-29. [PMID: 24825674 DOI: 10.1002/cmdc.201402034] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
100 Lee S, Song Y, Hong BJ, Macrenaris KW, Mastarone DJ, O'halloran TV, Meade TJ, Nguyen ST. Modular Polymer-Caged Nanobins as a Theranostic Platform with Enhanced Magnetic Resonance Relaxivity and pH-Responsive Drug Release. Angewandte Chemie 2010;122:10156-60. [DOI: 10.1002/ange.201004867] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
101 Friebe B, Godenschweger F, Fatahi M, Speck O, Roggenbuck D, Reinhold D, Reddig A. The potential toxic impact of different gadolinium-based contrast agents combined with 7-T MRI on isolated human lymphocytes. Eur Radiol Exp 2018;2:40. [PMID: 30483972 DOI: 10.1186/s41747-018-0069-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
102 Lemaster JE, Wang Z, Hariri A, Chen F, Hu Z, Huang Y, Barback CV, Cochran R, Gianneschi NC, Jokerst JV. Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging. Chem Mater 2019;31:251-9. [PMID: 33859455 DOI: 10.1021/acs.chemmater.8b04333] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
103 Tu C, Osborne EA, Louie AY. Activatable T₁ and T₂ magnetic resonance imaging contrast agents. Ann Biomed Eng 2011;39:1335-48. [PMID: 21331662 DOI: 10.1007/s10439-011-0270-0] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 6.1] [Reference Citation Analysis]
104 Frenzel T, Lawaczeck R, Taupitz M, Jost G, Lohrke J, Sieber MA, Pietsch H. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives. Investigative Radiology 2015;50:671-8. [DOI: 10.1097/rli.0000000000000193] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
105 Conti A, Magnin R, Gerstenmayer M, Tsapis N, Dumont E, Tillement O, Lux F, Le Bihan D, Mériaux S, Della Penna S, Larrat B. Empirical and Theoretical Characterization of the Diffusion Process of Different Gadolinium-Based Nanoparticles within the Brain Tissue after Ultrasound-Induced Permeabilization of the Blood-Brain Barrier. Contrast Media Mol Imaging 2019;2019:6341545. [PMID: 31866799 DOI: 10.1155/2019/6341545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
106 Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater 2021;33:e1906539. [PMID: 32495404 DOI: 10.1002/adma.201906539] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 25.0] [Reference Citation Analysis]
107 Cao Y, Zu G, Kuang Y, He Y, Mao Z, Liu M, Xiong D, Pei R. Biodegradable Nanoglobular Magnetic Resonance Imaging Contrast Agent Constructed with Host-Guest Self-Assembly for Tumor-Targeted Imaging. ACS Appl Mater Interfaces 2018;10:26906-16. [PMID: 30028584 DOI: 10.1021/acsami.8b08021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
108 Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev 2010;110:2960-3018. [PMID: 20397688 DOI: 10.1021/cr900284a] [Cited by in Crossref: 332] [Cited by in F6Publishing: 233] [Article Influence: 30.2] [Reference Citation Analysis]
109 Del Galdo F, Wermuth PJ, Addya S, Fortina P, Jimenez SA. NFκB activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent Omniscan: possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann Rheum Dis 2010;69:2024-33. [PMID: 20959327 DOI: 10.1136/ard.2010.134858] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
110 Zu G, Cao Y, Dong J, Zhou Q, van Rijn P, Liu M, Pei R. Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance Contrast Agent for Tumor-Targeted Imaging. ACS Appl Bio Mater 2019;2:406-16. [DOI: 10.1021/acsabm.8b00639] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv Ther 2016;33:1-28. [PMID: 26809251 DOI: 10.1007/s12325-015-0275-4] [Cited by in Crossref: 169] [Cited by in F6Publishing: 110] [Article Influence: 33.8] [Reference Citation Analysis]
112 Bishop DP, Hare DJ, Fryer F, Taudte RV, Cardoso BR, Cole N, Doble PA. Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS. Analyst 2015;140:2842-6. [DOI: 10.1039/c4an02283a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 5.3] [Reference Citation Analysis]
113 Bussi S, Coppo A, Botteron C, Fraimbault V, Fanizzi A, De Laurentiis E, Colombo Serra S, Kirchin MA, Tedoldi F, Maisano F. Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 2018;47:746-52. [PMID: 28730643 DOI: 10.1002/jmri.25822] [Cited by in Crossref: 68] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]
114 Petronek MS, Steinbach EJ, Kalen AL, Builta ZJ, Callaghan CM, Hyer DE, Spitz DR, Flynn RT, Buatti JM, Magnotta VA, Zepeda-Orozco D, St-Aubin JJ, Allen BG. Assessment of Gadobutrol Safety in Combination with Ionizing Radiation Using a Preclinical MRI-Guided Radiotherapy Model. Radiat Res 2021;195:230-4. [PMID: 33347596 DOI: 10.1667/RADE-20-00199.1] [Reference Citation Analysis]
115 Feuerecker B, Durst M, Michalik M, Schneider G, Saur D, Menzel M, Schwaiger M, Schilling F. Hyperpolarized 13C Diffusion MRS of Co-Polarized Pyruvate and Fumarate to Measure Lactate Export and Necrosis. J Cancer 2017;8:3078-85. [PMID: 28928899 DOI: 10.7150/jca.20250] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
116 Longo DL, Arena F, Consolino L, Minazzi P, Geninatti-Crich S, Giovenzana GB, Aime S. Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners. Biomaterials 2016;75:47-57. [PMID: 26480471 DOI: 10.1016/j.biomaterials.2015.10.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
117 Tedeschi E, Caranci F, Giordano F, Angelini V, Cocozza S, Brunetti A. Gadolinium retention in the body: what we know and what we can do. Radiol med 2017;122:589-600. [DOI: 10.1007/s11547-017-0757-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
118 Rüber T, David B, Lüchters G, Nass RD, Friedman A, Surges R, Stöcker T, Weber B, Deichmann R, Schlaug G, Hattingen E, Elger CE. Evidence for peri-ictal blood-brain barrier dysfunction in patients with epilepsy. Brain 2018;141:2952-65. [PMID: 30239618 DOI: 10.1093/brain/awy242] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
119 Ringler MD, Rhodes NG, Ayers-Ringler JR, Jakaitis DR, McDonald RJ, Kallmes DF, McDonald JS. Gadolinium retention within multiple rat organs after intra-articular administration of gadolinium-based contrast agents. Skeletal Radiol 2021;50:1419-25. [PMID: 33404669 DOI: 10.1007/s00256-020-03695-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Gianolio E, Gregorio ED, Aime S. Chemical Insights into the Issues of Gd Retention in the Brain and Other Tissues Upon the Administration of Gd-Containing MRI Contrast Agents: Chemical Insights into the Issues of Gd Retention in the Brain and Other Tissues Upon the Administration of Gd-Containing MRI Contrast Agents. Eur J Inorg Chem 2019;2019:137-51. [DOI: 10.1002/ejic.201801220] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
121 Pignotti E, Dinelli E, Birke M. Geochemical characterization and rare earth elements anomalies in surface- and groundwaters of the Romagna area (Italy). Rend Fis Acc Lincei 2017;28:265-79. [DOI: 10.1007/s12210-016-0561-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
122 Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral J. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release 2021;332:346-66. [DOI: 10.1016/j.jconrel.2021.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
123 Baranyai Z, Rolla GA, Negri R, Forgács A, Giovenzana GB, Tei L. Comprehensive Evaluation of the Physicochemical Properties of Ln III Complexes of Aminoethyl-DO3A as pH-Responsive T1 -MRI Contrast Agents. Chem Eur J 2014;20:2933-44. [DOI: 10.1002/chem.201304063] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
124 Greiser J, Weigand W, Freesmeyer M. Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals (Basel) 2019;12:E137. [PMID: 31527492 DOI: 10.3390/ph12030137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
125 Chall S, Mati SS, Gorain B, Rakshit S, Bhattacharya SC. Toxicological assessment of PEG functionalized f-block rare earth phosphate nanorods. Toxicol Res 2015;4:966-75. [DOI: 10.1039/c5tx00049a] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
126 Lux J, Chan M, Elst LV, Schopf E, Mahmoud E, Laurent S, Almutairi A. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability. J Mater Chem B 2013;1:6359-64. [PMID: 24505553 DOI: 10.1039/C3TB21104E] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
127 Renard Y, Hossu G, Chen B, Krebs M, Labrousse M, Perez M. A guide for effective anatomical vascularization studies: useful ex vivo methods for both CT and MRI imaging before dissection. J Anat 2018;232:15-25. [PMID: 29023687 DOI: 10.1111/joa.12718] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
128 Oh H, Chung YE, You JS, Joo CG, Kim PK, Lim JS, Kim MJ. Gadolinium retention in rat abdominal organs after administration of gadoxetic acid disodium compared to gadodiamide and gadobutrol. Magn Reson Med 2020;84:2124-32. [PMID: 32162406 DOI: 10.1002/mrm.28249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
129 Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, Powell AJ, Raman SV, Pennell DJ. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020;22:76. [PMID: 33161900 DOI: 10.1186/s12968-020-00682-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 20.0] [Reference Citation Analysis]
130 Wang J, Salzillo T, Jiang Y, Mackeyev Y, David Fuller C, Chung C, Choi S, Hughes N, Ding Y, Yang J, Vedam S, Krishnan S. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac. Radiother Oncol 2021;161:55-64. [PMID: 34089753 DOI: 10.1016/j.radonc.2021.05.023] [Reference Citation Analysis]
131 Algin O. A new contrast media for functional MR urography: Gd-MAG3. Med Hypotheses 2011;77:74-6. [PMID: 21470781 DOI: 10.1016/j.mehy.2011.03.029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
132 Lord ML, Mcneill FE, Gräfe JL, Noseworthy MD, Chettle DR. Self-identified gadolinium toxicity: comparison of gadolinium in bone and urine to healthy gadolinium-based contrast agent exposed volunteers. Physiol Meas 2018;39:115008. [DOI: 10.1088/1361-6579/aaedc6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
133 Ozkaya-ahmadov T, Wang P, Zhao H, Zhang P. Magnetic relaxation-based sensing of phosphate ion. Talanta 2017;162:256-60. [DOI: 10.1016/j.talanta.2016.10.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
134 Pullicino R, Radon M, Biswas S, Bhojak M, Das K. A Review of the Current Evidence on Gadolinium Deposition in the Brain. Clin Neuroradiol 2018;28:159-69. [PMID: 29523896 DOI: 10.1007/s00062-018-0678-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
135 Usman MS, Hussein MZ, Fakurazi S, Ahmad Saad FF. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem Cent J 2017;11:47. [PMID: 29086824 DOI: 10.1186/s13065-017-0275-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
136 Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26. [PMID: 22540153 DOI: 10.1186/1532-429X-14-26] [Cited by in Crossref: 82] [Cited by in F6Publishing: 43] [Article Influence: 9.1] [Reference Citation Analysis]
137 Shriver LP, Plummer EM, Thomas DM, Ho S, Manchester M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J Mater Chem B 2013;1:5256. [DOI: 10.1039/c3tb20521e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
138 Wagner B, Drel V, Gorin Y. Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol 2016;311:F1-F11. [PMID: 27147669 DOI: 10.1152/ajprenal.00166.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
139 Prybylski JP, Jay M. The Impact of Excess Ligand on the Retention of Nonionic, Linear Gadolinium-Based Contrast Agents in Patients With Various Levels of Renal Dysfunction: A Review and Simulation Analysis. Adv Chronic Kidney Dis 2017;24:176-82. [PMID: 28501081 DOI: 10.1053/j.ackd.2017.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
140 Fingerhut S, Sperling M, Holling M, Niederstadt T, Allkemper T, Radbruch A, Heindel W, Paulus W, Jeibmann A, Karst U. Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol 2018;136:127-38. [PMID: 29748901 DOI: 10.1007/s00401-018-1857-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
141 Thalén S, Maanja M, Sigfridsson A, Maret E, Sörensson P, Ugander M. The dynamics of extracellular gadolinium-based contrast agent excretion into pleural and pericardial effusions quantified by T1 mapping cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2019;21:71. [PMID: 31730498 DOI: 10.1186/s12968-019-0580-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
142 Leiner T, Kucharczyk W. Special issue: nephrogenic systemic fibrosis. J Magn Reson Imaging 2009;30:1233-5. [PMID: 19938034 DOI: 10.1002/jmri.21985] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
143 Yoo RE, Sohn CH, Kang KM, Yun TJ, Choi SH, Kim JH, Park SW. Evaluation of Gadolinium Retention After Serial Administrations of a Macrocyclic Gadolinium-Based Contrast Agent (Gadobutrol): A Single-Institution Experience With 189 Patients. Invest Radiol 2018;53:20-5. [PMID: 28742734 DOI: 10.1097/RLI.0000000000000404] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 6.3] [Reference Citation Analysis]
144 Dai L, Jones CM, Chan WTK, Pham TA, Ling X, Gale EM, Rotile NJ, Tai WC, Anderson CJ, Caravan P, Law GL. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat Commun 2018;9:857. [PMID: 29487362 DOI: 10.1038/s41467-018-03315-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 12.3] [Reference Citation Analysis]
145 Schopf E, Sankaranarayanan J, Chan M, Mattrey R, Almutairi A. An extracellular MRI polymeric contrast agent that degrades at physiological pH. Mol Pharm 2012;9:1911-8. [PMID: 22657107 DOI: 10.1021/mp2005998] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
146 Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology. 2016;58:433-441. [PMID: 26873830 DOI: 10.1007/s00234-016-1658-1] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 17.6] [Reference Citation Analysis]
147 Kartamihardja AA, Nakajima T, Kameo S, Koyama H, Tsushima Y. Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. Br J Radiol 2016;89:20160509. [PMID: 27459250 DOI: 10.1259/bjr.20160509] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
148 Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics 2019;11:240-54. [PMID: 30516229 DOI: 10.1039/c8mt00302e] [Cited by in Crossref: 55] [Cited by in F6Publishing: 13] [Article Influence: 55.0] [Reference Citation Analysis]
149 Yue Q, Gao X, Yu Y, Li Y, Hua W, Fan K, Zhang R, Qian J, Chen L, Li C, Mao Y. An EGFRvIII targeted dual-modal gold nanoprobe for imaging-guided brain tumor surgery. Nanoscale 2017;9:7930-40. [PMID: 28569328 DOI: 10.1039/c7nr01077j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
150 Vangijzegem T, Stanicki D, Boutry S, Paternoster Q, Vander Elst L, Muller RN, Laurent S. VSION as high field MRI T1 contrast agent: evidence of their potential as positive contrast agent for magnetic resonance angiography. Nanotechnology 2018;29:265103. [PMID: 29620535 DOI: 10.1088/1361-6528/aabbd0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
151 Guenoun J, Ruggiero A, Doeswijk G, Janssens RC, Koning GA, Kotek G, Krestin GP, Bernsen MR. In vivo quantitative assessment of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging: CELL VIABILITY DETERMINATION OF SPIO OR GD LABELED CELLS. Contrast Media Mol Imaging 2013;8:165-74. [DOI: 10.1002/cmmi.1513] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
152 Truffi M, Sevieri M, Morelli L, Monieri M, Mazzucchelli S, Sorrentino L, Allevi R, Bonizzi A, Zerbi P, Marchini B, Longhi E, Sampietro GM, Colombo F, Prosperi D, Colombo M, Corsi F. Anti-MAdCAM-1-Conjugated Nanocarriers Delivering Quantum Dots Enable Specific Imaging of Inflammatory Bowel Disease. Int J Nanomedicine 2020;15:8537-52. [PMID: 33173291 DOI: 10.2147/IJN.S264513] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
153 Mostafaei F, McNeill FE, Chettle DR, Noseworthy MD. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI. Physiol Meas. 2015;36:N1-13. [PMID: 25501799 DOI: 10.1088/0967-3334/36/1/N1] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
154 Li Y, Han Z, Roelle S, DeSanto A, Sabatelle R, Schur R, Lu ZR. Synthesis and Assessment of Peptide Gd-DOTA Conjugates Targeting Extradomain B Fibronectin for Magnetic Resonance Molecular Imaging of Prostate Cancer. Mol Pharm 2017;14:3906-15. [PMID: 28976766 DOI: 10.1021/acs.molpharmaceut.7b00619] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
155 Tu C, Ma X, House A, Kauzlarich SM, Louie AY. PET Imaging and Biodistribution of Silicon Quantum Dots in Mice. ACS Med Chem Lett 2011;2:285-8. [PMID: 21546997 DOI: 10.1021/ml1002844] [Cited by in Crossref: 93] [Cited by in F6Publishing: 66] [Article Influence: 9.3] [Reference Citation Analysis]
156 Babič A, Vorobiev V, Xayaphoummine C, Lapicorey G, Chauvin A, Helm L, Allémann E. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent. Chem Eur J 2018;24:1348-57. [DOI: 10.1002/chem.201703962] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
157 Martí-bonmatí L, Martí-bonmatí E. Retención de compuestos de gadolinio usados en resonancia magnética: revisión crítica y recomendaciones de las agencias regulatorias. Radiología 2017;59:469-77. [DOI: 10.1016/j.rx.2017.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
158 Khandhar AP, Keselman P, Kemp SJ, Ferguson RM, Goodwill PW, Conolly SM, Krishnan KM. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 2017;9:1299-306. [PMID: 28059427 DOI: 10.1039/c6nr08468k] [Cited by in Crossref: 78] [Cited by in F6Publishing: 31] [Article Influence: 26.0] [Reference Citation Analysis]
159 Wang Y, Wang ZB, Xu YH. Efficacy, Efficiency, and Safety of Magnetic Resonance-Guided High-Intensity Focused Ultrasound for Ablation of Uterine Fibroids: Comparison with Ultrasound-Guided Method. Korean J Radiol 2018;19:724-32. [PMID: 29962878 DOI: 10.3348/kjr.2018.19.4.724] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
160 Yue Y, Zhao X. Melanin-Like Nanomedicine in Photothermal Therapy Applications. Int J Mol Sci 2021;22:E399. [PMID: 33401518 DOI: 10.3390/ijms22010399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Choi S, Spini M, Hua J, Harrison DM. Blood-brain barrier breakdown in non-enhancing multiple sclerosis lesions detected by 7-Tesla MP2RAGE ΔT1 mapping. PLoS One 2021;16:e0249973. [PMID: 33901207 DOI: 10.1371/journal.pone.0249973] [Reference Citation Analysis]
162 Amigues I, Tugcu A, Russo C, Giles JT, Morgenstein R, Zartoshti A, Schulze C, Flores R, Bokhari S, Bathon JM. Myocardial Inflammation, Measured Using 18-Fluorodeoxyglucose Positron Emission Tomography With Computed Tomography, Is Associated With Disease Activity in Rheumatoid Arthritis. Arthritis Rheumatol 2019;71:496-506. [PMID: 30407745 DOI: 10.1002/art.40771] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
163 Chen H, Wang L, Fu H, Wang Z, Xie Y, Zhang Z, Tang Y. Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. J Mater Chem B 2016;4:7472-80. [PMID: 32263747 DOI: 10.1039/c6tb01422d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 4.2] [Reference Citation Analysis]
164 Spanakis M, Marias K. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp® simulator platform. In Silico Pharmacol 2014;2:2. [PMID: 27502621 DOI: 10.1186/s40203-014-0002-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
165 Avedano S, Botta M, Haigh JS, Longo DL, Woods M. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better. Inorg Chem 2013;52:8436-50. [PMID: 23841587 DOI: 10.1021/ic400308a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
166 Clough TJ, Baxan N, Coakley EJ, Rivas C, Zhao L, Leclerc I, Martinez-Sanchez A, Rutter GA, Long NJ. Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas. Dalton Trans 2020;49:4732-40. [PMID: 32207493 DOI: 10.1039/d0dt00332h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
167 Kneepkens E, Fernandes A, Nicolay K, Grüll H. Iron(III)-Based Magnetic Resonance–Imageable Liposomal T1 Contrast Agent for Monitoring Temperature-Induced Image-Guided Drug Delivery. Invest Radiol 2016;51:735-45. [DOI: 10.1097/rli.0000000000000297] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
168 De León-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD. Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 2015;42:545-65. [PMID: 25975847 DOI: 10.1002/jmri.24787] [Cited by in Crossref: 98] [Cited by in F6Publishing: 63] [Article Influence: 16.3] [Reference Citation Analysis]
169 Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016;240:109-26. [PMID: 26571000 DOI: 10.1016/j.jconrel.2015.11.009] [Cited by in Crossref: 236] [Cited by in F6Publishing: 155] [Article Influence: 39.3] [Reference Citation Analysis]
170 Lyapustina T, Goldfine C, Rhyee S, Babu KM, Griswold MK. Evaluating the Patient with Reported Gadolinium-Associated Illness. J Med Toxicol 2019;15:36-44. [PMID: 30499040 DOI: 10.1007/s13181-018-0689-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
171 Edogun O, Nguyen NH, Halim M. Fluorescent single-stranded DNA-based assay for detecting unchelated Gadolinium(III) ions in aqueous solution. Anal Bioanal Chem 2016;408:4121-31. [PMID: 27071762 DOI: 10.1007/s00216-016-9503-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
172 Rayamajhi S, Marasini R, Nguyen TDT, Plattner BL, Biller D, Aryal S. Strategic reconstruction of macrophage-derived extracellular vesicles as a magnetic resonance imaging contrast agent. Biomater Sci 2020;8:2887-904. [DOI: 10.1039/d0bm00128g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
173 Ranga A, Agarwal Y, Garg KJ. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging 2017;27:141-7. [PMID: 28744073 DOI: 10.4103/0971-3026.209212] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 29.0] [Reference Citation Analysis]
174 Mani V, Alie N, Ramachandran S, Robson PM, Besa C, Piazza G, Mercuri M, Grosso M, Taouli B, Goldhaber SZ, Fayad ZA. A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis. J Vis Exp 2015;:e52761. [PMID: 26065866 DOI: 10.3791/52761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
175 Weiss M, Siegmund W. Unusual Distribution Kinetics of Gadoxetate in Healthy Human Subjects Genotyped for OATP1B1: Application of Population Analysis and a Minimal Physiological-Based Pharmacokinetic Model. J Clin Pharmacol 2021;61:506-14. [PMID: 33084108 DOI: 10.1002/jcph.1762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Malayeri AA, Brooks KM, Bryant LH, Evers R, Kumar P, Reich DS, Bluemke DA. National Institutes of Health Perspective on Reports of Gadolinium Deposition in the Brain. J Am Coll Radiol 2016;13:237-41. [PMID: 26810815 DOI: 10.1016/j.jacr.2015.11.009] [Cited by in Crossref: 80] [Cited by in F6Publishing: 66] [Article Influence: 16.0] [Reference Citation Analysis]
177 Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR. Extent of Signal Hyperintensity on Unenhanced T1-weighted Brain MR Images after More than 35 Administrations of Linear Gadolinium-based Contrast Agents. Radiology 2017;282:516-25. [DOI: 10.1148/radiol.2016152864] [Cited by in Crossref: 70] [Cited by in F6Publishing: 63] [Article Influence: 17.5] [Reference Citation Analysis]
178 Chen H, Wang GD, Tang W, Todd T, Zhen Z, Tsang C, Hekmatyar K, Cowger T, Hubbard R, Zhang W, Stickney J, Shen B, Xie J. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater 2014;26:6761-6. [PMID: 25178894 DOI: 10.1002/adma.201402964] [Cited by in Crossref: 117] [Cited by in F6Publishing: 93] [Article Influence: 16.7] [Reference Citation Analysis]
179 Gräfe J, Mcneill F, Byun S, Chettle D, Noseworthy M. The feasibility of in vivo detection of gadolinium by prompt gamma neutron activation analysis following gadolinium-based contrast-enhanced MRI. Applied Radiation and Isotopes 2011;69:105-11. [DOI: 10.1016/j.apradiso.2010.07.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
180 Bhargava V, Singh K, Meena P, Sanyal R. Nephrogenic systemic fibrosis: A frivolous entity. World J Nephrol 2021;10:29-36. [PMID: 34136369 DOI: 10.5527/wjn.v10.i3.29] [Reference Citation Analysis]
181 Dehghani S, Alam NR, Shahriarian S, Mortezazadeh T, Haghgoo S, Golmohamadpour A, Majidi B, Khoobi M. The effect of size and aspect ratio of Fe-MIL-88B-NH2 metal-organic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4376-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
182 Ye Z, Wu X, Tan M, Jesberger J, Grisworld M, Lu ZR. Synthesis and evaluation of a polydisulfide with Gd-DOTA monoamide side chains as a biodegradable macromolecular contrast agent for MR blood pool imaging. Contrast Media Mol Imaging 2013;8:220-8. [PMID: 23606425 DOI: 10.1002/cmmi.1520] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
183 Chen K, Li P, Zhu C, Xia Z, Xia Q, Zhong L, Xiao B, Cheng T, Wu C, Shen C, Zhang X, Zhu J. Mn(II) Complex of Lipophilic Group-Modified Ethylenediaminetetraacetic Acid (EDTA) as a New Hepatobiliary MRI Contrast Agent. J Med Chem 2021;64:9182-92. [PMID: 34152137 DOI: 10.1021/acs.jmedchem.1c00393] [Reference Citation Analysis]
184 Wells ML, Moynagh MR, Carter RE, Childs RA, Leitch CE, Fletcher JG, Yeh BM, Venkatesh SK. Correlation of hepatic fractional extracellular space using gadolinium enhanced MRI with liver stiffness using magnetic resonance elastography. Abdom Radiol (NY) 2017;42:191-8. [PMID: 27511365 DOI: 10.1007/s00261-016-0867-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
185 Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 2012;5:173-86. [PMID: 22390560 DOI: 10.1586/ecp.12.1] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 9.7] [Reference Citation Analysis]
186 Trog S, El-Khatib AH, Beck S, Makowski MR, Jakubowski N, Linscheid MW. Complementarity of molecular and elemental mass spectrometric imaging of Gadovist in mouse tissues. Anal Bioanal Chem 2019;411:629-37. [PMID: 30456604 DOI: 10.1007/s00216-018-1477-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
187 Knuttinen MG, Karow J, Mar W, Golden M, Xie KL. Blood Pool Contrast-enhanced Magnetic Resonance Angiography with Correlation to Digital Subtraction Angiography: A Pictorial Review. J Clin Imaging Sci 2014;4:63. [PMID: 25558430 DOI: 10.4103/2156-7514.145860] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
188 Smailovic H, Wilk B, Wisenberg G, Sykes J, Butler J, Hicks J, Thiessen JD, Prato FS. Simultaneous measurements of myocardial glucose metabolism and extracellular volumes with hybrid PET/MRI using concurrent injections of Gd-DTPA and [18F]FDG. J Nucl Cardiol 2021. [PMID: 33502694 DOI: 10.1007/s12350-020-02486-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Sneag DB, Daniels SP, Geannette C, Queler SC, Lin BQ, de Silva C, Tan ET. Post-Contrast 3D Inversion Recovery Magnetic Resonance Neurography for Evaluation of Branch Nerves of the Brachial Plexus. Eur J Radiol 2020;132:109304. [PMID: 33035919 DOI: 10.1016/j.ejrad.2020.109304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
190 Wegscheid ML, Morshed RA, Cheng Y, Lesniak MS. The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin Drug Deliv 2014;11:957-75. [PMID: 24766329 DOI: 10.1517/17425247.2014.912629] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
191 Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–Organic Frameworks in Biomedicine. Chem Rev 2012;112:1232-68. [DOI: 10.1021/cr200256v] [Cited by in Crossref: 2885] [Cited by in F6Publishing: 1984] [Article Influence: 288.5] [Reference Citation Analysis]
192 Pitchaimani A, Thanh Nguyen TD, Wang H, Bossmann SH, Aryal S. Design and characterization of gadolinium infused theranostic liposomes. RSC Adv 2016;6:36898-905. [DOI: 10.1039/c6ra00552g] [Cited by in Crossref: 18] [Article Influence: 3.6] [Reference Citation Analysis]
193 Hill LK, Hoang DM, Chiriboga LA, Wisniewski T, Sadowski MJ, Wadghiri YZ. Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography. Front Aging Neurosci 2020;12:585218. [PMID: 33192479 DOI: 10.3389/fnagi.2020.585218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
194 Layne KA, Dargan PI, Archer JRH, Wood DM. Gadolinium deposition and the potential for toxicological sequelae - A literature review of issues surrounding gadolinium-based contrast agents. Br J Clin Pharmacol 2018;84:2522-34. [PMID: 30032482 DOI: 10.1111/bcp.13718] [Cited by in Crossref: 60] [Cited by in F6Publishing: 43] [Article Influence: 20.0] [Reference Citation Analysis]
195 Fingerhut S, Niehoff AC, Sperling M, Jeibmann A, Paulus W, Niederstadt T, Allkemper T, Heindel W, Holling M, Karst U. Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents. J Trace Elem Med Biol 2018;45:125-30. [PMID: 29173468 DOI: 10.1016/j.jtemb.2017.10.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
196 Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018;8:2521-48. [PMID: 29721097 DOI: 10.7150/thno.23789] [Cited by in Crossref: 72] [Cited by in F6Publishing: 41] [Article Influence: 24.0] [Reference Citation Analysis]
197 Demine S, Balhuizen A, Debaille V, Joosten L, Fereau M, Chilla SNM, Millard I, Scharfmann R, Egrise D, Goldman S, Marchetti P, Gotthardt M, Laurent S, Burtea C, Eizirik DL. Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa. Molecules 2018;23:E2100. [PMID: 30134599 DOI: 10.3390/molecules23092100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
198 Taupitz M, Stolzenburg N, Ebert M, Schnorr J, Hauptmann R, Kratz H, Hamm B, Wagner S. Gadolinium-containing magnetic resonance contrast media: investigation on the possible transchelation of Gd³⁺ to the glycosaminoglycan heparin. Contrast Media Mol Imaging 2013;8:108-16. [PMID: 23281283 DOI: 10.1002/cmmi.1500] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
199 Raman FS, Nacif MS, Cater G, Gai N, Jones J, Li D, Sibley CT, Liu S, Bluemke DA. 3.0-T whole-heart coronary magnetic resonance angiography: comparison of gadobenate dimeglumine and gadofosveset trisodium. Int J Cardiovasc Imaging 2013;29:1085-94. [PMID: 23515949 DOI: 10.1007/s10554-013-0192-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
200 Maecker HT, Wang W, Rosenberg-Hasson Y, Semelka RC, Hickey J, Koran LM. An initial investigation of serum cytokine levels in patients with gadolinium retention. Radiol Bras 2020;53:306-13. [PMID: 33071374 DOI: 10.1590/0100-3984.2019.0075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
201 Shenoy-bhangle A, Gee MS. Magnetic resonance imaging of perianal Crohn disease in children. Pediatr Radiol 2016;46:838-46. [DOI: 10.1007/s00247-016-3575-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
202 McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1496. [PMID: 28895298 DOI: 10.1002/wnan.1496] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
203 Edelman RR, Koktzoglou I. Noncontrast MR angiography: An update. J Magn Reson Imaging 2019;49:355-73. [PMID: 30566270 DOI: 10.1002/jmri.26288] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 9.7] [Reference Citation Analysis]
204 Do C, DeAguero J, Brearley A, Trejo X, Howard T, Escobar GP, Wagner B. Gadolinium-Based Contrast Agent Use, Their Safety, and Practice Evolution. Kidney360 2020;1:561-8. [PMID: 34423308 DOI: 10.34067/kid.0000272019] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
205 Rami M, Montero J, Dubois L, Lambin P, Scozzafava A, Winum J, Supuran CT. Carbonic anhydrase inhibitors: Gd(iii) complexes of DOTA- and TETA-sulfonamide conjugates targeting the tumor associated carbonic anhydrase isozymes IX and XII. New J Chem 2010;34:2139. [DOI: 10.1039/c0nj00214c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
206 Davies GL, Kramberger I, Davis JJ. Environmentally responsive MRI contrast agents. Chem Commun (Camb) 2013;49:9704-21. [PMID: 24040650 DOI: 10.1039/c3cc44268c] [Cited by in Crossref: 97] [Cited by in F6Publishing: 80] [Article Influence: 13.9] [Reference Citation Analysis]
207 Georgiou L, Penny J, Nicholls G, Woodhouse N, Blé FX, Hubbard Cristinacce PL, Naish JH. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging: Monitoring Transporter-Mediated Processes in Healthy Volunteers. Invest Radiol 2017;52:111-9. [PMID: 28002117 DOI: 10.1097/RLI.0000000000000316] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
208 Antonelli A, Sfara C, Magnani M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res 2017;10:731-66. [DOI: 10.1007/s12274-016-1342-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
209 Chawda NR, Mahapatra SK, Banerjee I. Surface-Modified Lanthanide Nanomaterials for Drug Delivery. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. pp. 431-49. [DOI: 10.1007/978-3-030-06115-9_22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
210 Jackson AW, Chandrasekharan P, Shi J, Rannard SP, Liu Q, Yang CT, He T. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents. Int J Nanomedicine 2015;10:5895-907. [PMID: 26425088 DOI: 10.2147/IJN.S88764] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
211 Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:31. [PMID: 22607376 DOI: 10.1186/1532-429X-14-31] [Cited by in Crossref: 62] [Cited by in F6Publishing: 23] [Article Influence: 6.9] [Reference Citation Analysis]
212 Tedeschi E, Cocozza S, Borrelli P, Ugga L, Morra VB, Palma G. Longitudinal Assessment of Dentate Nuclei Relaxometry during Massive Gadobutrol Exposure. Magn Reson Med Sci 2018;17:100-4. [PMID: 28367903 DOI: 10.2463/mrms.cr.2016-0137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
213 Hijnen NM, Elevelt A, Grüll H. Stability and Trapping of Magnetic Resonance Imaging Contrast Agents During High-Intensity Focused Ultrasound Ablation Therapy: . Investigative Radiology 2013;48:517-24. [DOI: 10.1097/rli.0b013e31829aae98] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
214 Behzadi AH, Zhao Y, Farooq Z, Prince MR. Immediate Allergic Reactions to Gadolinium-based Contrast Agents: A Systematic Review and Meta-Analysis. Radiology 2018;286:471-82. [DOI: 10.1148/radiol.2017162740] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 20.3] [Reference Citation Analysis]
215 Chandrasekharan P, Yang C, Nasrallah FA, Tay HC, Chuang K, Robins EG. Pharmacokinetics of Gd(DO3A-Lys) and MR imaging studies in an orthotopic U87MG glioma tumor model: Pharmacokinetics and mr imaging studies of Gd(DO3A-Lys). Contrast Media Mol Imaging 2015;10:237-44. [DOI: 10.1002/cmmi.1634] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
216 Czeyda-Pommersheim F, Martin DR, Costello JR, Kalb B. Contrast Agents for MR Imaging. Magn Reson Imaging Clin N Am 2017;25:705-11. [PMID: 28964460 DOI: 10.1016/j.mric.2017.06.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
217 Feng M, Fan YZ, Ma XJ, Li JX, Yang XG. The gadolinium-based contrast agent Omniscan® promotes in vitro fibroblast survival through in situ precipitation. Metallomics 2015;7:1103-10. [PMID: 25867453 DOI: 10.1039/c5mt00055f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
218 Pan Y, Chen W, Yang J, Zheng J, Yang M, Yi C. Facile Synthesis of Gadolinium Chelate-Conjugated Polymer Nanoparticles for Fluorescence/Magnetic Resonance Dual-Modal Imaging. Anal Chem 2018;90:1992-2000. [DOI: 10.1021/acs.analchem.7b04078] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
219 Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. Progressive Increase of T1 Signal Intensity of the Dentate Nucleus on Unenhanced Magnetic Resonance Images Is Associated With Cumulative Doses of Intravenously Administered Gadodiamide in Patients With Normal Renal Function, Suggesting Dechelation: . Investigative Radiology 2014;49:685-90. [DOI: 10.1097/rli.0000000000000072] [Cited by in Crossref: 305] [Cited by in F6Publishing: 105] [Article Influence: 43.6] [Reference Citation Analysis]
220 Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, Gazeau F, Clement O. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. Contrast Media Mol Imaging 2013;8:439-55. [PMID: 24375900 DOI: 10.1002/cmmi.1547] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
221 Busse M, Windsor MS, Tefay AJ, Kardashinsky M, Fenton JM, Morrison DE, Harris HH, Rendina LM. Tumor cell uptake and selectivity of gadolinium(III)-phosphonium complexes: The role of delocalisation at the phosphonium centre. Journal of Inorganic Biochemistry 2017;177:313-21. [DOI: 10.1016/j.jinorgbio.2017.07.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
222 Ramasawmy R, Rogers T, Alcantar MA, McGuirt DR, Khan JM, Kellman P, Xue H, Faranesh AZ, Campbell-Washburn AE, Lederman RJ, Herzka DA. Blood volume measurement using cardiovascular magnetic resonance and ferumoxytol: preclinical validation. J Cardiovasc Magn Reson 2018;20:62. [PMID: 30201013 DOI: 10.1186/s12968-018-0486-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
223 Murphy DJ, Kwong RY. Contrast Agents in Cardiovascular Magnetic Resonance Imaging. In: Kwong RY, Jerosch-herold M, Heydari B, editors. Cardiovascular Magnetic Resonance Imaging. New York: Springer; 2019. pp. 127-43. [DOI: 10.1007/978-1-4939-8841-9_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
224 Hedlund A, Ahrén M, Gustafsson H, Abrikossova N, Warntjes M, Jönsson JI, Uvdal K, Engström M. Gd₂O₃ nanoparticles in hematopoietic cells for MRI contrast enhancement. Int J Nanomedicine 2011;6:3233-40. [PMID: 22228991 DOI: 10.2147/IJN.S23940] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 0.6] [Reference Citation Analysis]
225 Korkusuz H, Knau LL, Kromen W, Bihrer V, Keese D, Piiper A, Vogl TJ. Different signal intensity at Gd-EOB-DTPA compared with Gd-DTPA-enhanced MRI in hepatocellular carcinoma transgenic mouse model in delayed phase hepatobiliary imaging. J Magn Reson Imaging 2012;35:1397-402. [PMID: 22267126 DOI: 10.1002/jmri.23584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
226 Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS Appl Mater Interfaces 2021;13:9412-24. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
227 Bücker P, Richter H, Radbruch A, Sperling M, Brand M, Holling M, Van Marck V, Paulus W, Jeibmann A, Karst U. Deposition patterns of iatrogenic lanthanum and gadolinium in the human body depend on delivered chemical binding forms. J Trace Elem Med Biol 2021;63:126665. [PMID: 33152670 DOI: 10.1016/j.jtemb.2020.126665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 Garcia J, Liu SZ, Louie AY. Biological effects of MRI contrast agents: gadolinium retention, potential mechanisms and a role for phosphorus. Philos Trans A Math Phys Eng Sci 2017;375:20170180. [PMID: 29038383 DOI: 10.1098/rsta.2017.0180] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
229 Zhang G, Zhang L, Si Y, Li Q, Xiao J, Wang B, Liang C, Wu Z, Tian G. Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery. Chemical Engineering Journal 2020;388:124269. [DOI: 10.1016/j.cej.2020.124269] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
230 Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol 2016;37:1192-8. [PMID: 26659341 DOI: 10.3174/ajnr.A4615] [Cited by in Crossref: 218] [Cited by in F6Publishing: 68] [Article Influence: 36.3] [Reference Citation Analysis]
231 Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium Retention and Toxicity—An Update. Advances in Chronic Kidney Disease 2017;24:138-46. [DOI: 10.1053/j.ackd.2017.03.004] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
232 Bermejo-velasco D, Dou W, Heerschap A, Ossipov D, Hilborn J. Injectable hyaluronic acid hydrogels with the capacity for magnetic resonance imaging. Carbohydrate Polymers 2018;197:641-8. [DOI: 10.1016/j.carbpol.2018.06.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
233 Miao Y, Xie F, Cen J, Zhou F, Tao X, Luo J, Han G, Kong X, Yang X, Sun J, Ling J. Fe 3+ @polyDOPA- b -polysarcosine, a T 1 -Weighted MRI Contrast Agent via Controlled NTA Polymerization. ACS Macro Lett 2018;7:693-8. [DOI: 10.1021/acsmacrolett.8b00287] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 8.7] [Reference Citation Analysis]
234 Khurana M. Renal Impairment in Pediatric Patients: Current Approaches to Drug Dosing. J Clin Pharmacol 2021;61 Suppl 1:S161-4. [PMID: 34185911 DOI: 10.1002/jcph.1908] [Reference Citation Analysis]
235 Richardson OC, Bane O, Scott ML, Tanner SF, Waterton JC, Sourbron SP, Carroll TJ, Buckley DL. Gadofosveset-based biomarker of tissue albumin concentration: Technical validation in vitro and feasibility in vivo. Magn Reson Med 2015;73:244-53. [PMID: 24515975 DOI: 10.1002/mrm.25128] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
236 Yin T, Coudyzer W, Peeters R, Liu Y, Cona MM, Feng Y, Xia Q, Yu J, Jiang Y, Dymarkowski S, Huang G, Chen F, Oyen R, Ni Y. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners: Rat Pancreas on Contrasted MRI and CT. Contrast Media Mol Imaging 2015;10:379-87. [DOI: 10.1002/cmmi.1640] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
237 Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 2017;47:1345-52. [PMID: 28526896 DOI: 10.1007/s00247-017-3874-1] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 19.5] [Reference Citation Analysis]
238 Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. Materials (Basel) 2020;13:E2586. [PMID: 32517085 DOI: 10.3390/ma13112586] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
239 Caschera L, Lazzara A, Piergallini L, Ricci D, Tuscano B, Vanzulli A. Contrast agents in diagnostic imaging: Present and future. Pharmacol Res 2016;110:65-75. [PMID: 27168225 DOI: 10.1016/j.phrs.2016.04.023] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 9.8] [Reference Citation Analysis]
240 Queler SC, Tan ET, Geannette C, Prince M, Sneag DB. Ferumoxytol-enhanced vascular suppression in magnetic resonance neurography. Skeletal Radiol 2021. [PMID: 33961070 DOI: 10.1007/s00256-021-03804-w] [Reference Citation Analysis]
241 Ye Z, Jeong EK, Wu X, Tan M, Yin S, Lu ZR. Polydisulfide manganese(II) complexes as non-gadolinium biodegradable macromolecular MRI contrast agents. J Magn Reson Imaging 2012;35:737-44. [PMID: 22031457 DOI: 10.1002/jmri.22848] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
242 Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, Zobel BB. Gadodiamide and Dentate Nucleus T1 Hyperintensity in Patients With Meningioma Evaluated by Multiple Follow-Up Contrast-Enhanced Magnetic Resonance Examinations With No Systemic Interval Therapy. Invest Radiol 2015;50:470-2. [PMID: 25756685 DOI: 10.1097/RLI.0000000000000154] [Cited by in Crossref: 150] [Cited by in F6Publishing: 48] [Article Influence: 30.0] [Reference Citation Analysis]
243 Paspulati RM, Partovi S, Herrmann KA, Krishnamurthi S, Delaney CP, Nguyen NC. Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging. 2015;40:1415-1425. [PMID: 26112492 DOI: 10.1007/s00261-015-0474-0] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 9.0] [Reference Citation Analysis]
244 Richard G, Noll C, Archambault M, Lebel R, Tremblay L, Ait-Mohand S, Guérin B, Blondin DP, Carpentier AC, Lepage M. Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model. Magn Reson Med 2021;85:1625-42. [PMID: 33010059 DOI: 10.1002/mrm.28535] [Reference Citation Analysis]
245 Mallio CA, Rovira À, Parizel PM, Quattrocchi CC. Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology 2020;62:925-34. [DOI: 10.1007/s00234-020-02434-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
246 Celiker FB, Tumkaya L, Mercantepe T, Beyazal M, Turan A, Beyazal Polat H, Suzan ZT, Inecikli MF, Akyildiz K, Yilmaz A. Effects of Gadodiamide and Gadoteric Acid on Rat Kidneys: A Comparative Study: Effects of Gadodiamide and Gadoteric Acid. J Magn Reson Imaging 2019;49:382-9. [DOI: 10.1002/jmri.26266] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
247 Park YS, Lee CH, Kim JH, Kim BH, Kim JH, Kim KA, Park CM. Effect of Gd-EOB-DTPA on hepatic fat quantification using high-speed T2-corrected multi-echo acquisition in 1H MR spectroscopy. Magnetic Resonance Imaging 2014;32:886-90. [DOI: 10.1016/j.mri.2014.04.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
248 Le Fur M, Caravan P. 86Y PET imaging. Methods Enzymol 2021;651:313-42. [PMID: 33888208 DOI: 10.1016/bs.mie.2020.12.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
249 Shi Y, Pan Y, Zhong J, Yang J, Zheng J, Cheng J, Song R, Yi C. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015;93:742-50. [DOI: 10.1016/j.carbon.2015.05.100] [Cited by in Crossref: 65] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
250 Khantasup K, Saiviroonporn P, Jarussophon S, Chantima W, Dharakul T. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer. Magn Reson Mater Phy 2018;31:633-44. [DOI: 10.1007/s10334-018-0687-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
251 Rigsby CK, Popescu AR, Nelson P, Orr RJ, Boylan EE, Schoeneman S, deFreitas RA. Safety of Blood Pool Contrast Agent Administration in Children and Young Adults. American Journal of Roentgenology 2015;205:1114-20. [DOI: 10.2214/ajr.14.13991] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
252 Varga-Szemes A, Kiss P, Rab A, Suranyi P, Lenkey Z, Simor T, Bryant RG, Elgavish GA. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent. PLoS One 2016;11:e0149260. [PMID: 26872055 DOI: 10.1371/journal.pone.0149260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
253 Kim JH, Suh JY, Woo DC, Sung YS, Son WC, Choi YS, Pae SJ, Kim JK. Difference in the intratumoral distributions of extracellular-fluid and intravascular MR contrast agents in glioblastoma growth. NMR Biomed 2016;29:1688-99. [PMID: 27723161 DOI: 10.1002/nbm.3591] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
254 Affram K, Smith T, Helsper S, Rosenberg JT, Han B, Trevino J, Agyare E. Comparative study on contrast enhancement of Magnevist and Magnevist-loaded nanoparticles in pancreatic cancer PDX model monitored by MRI. Cancer Nanotechnol 2020;11:5. [PMID: 32714466 DOI: 10.1186/s12645-020-00061-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
255 Kim SY, Wu EH, Park SH, Wang ZJ, Hope TA, Yee J, Zhao LQ, Chang WC, Yeh BM. Comparison of hepatocellular carcinoma conspicuity on hepatobiliary phase images with gadoxetate disodium vs. delayed phase images with extracellular cellular contrast agent. Abdom Radiol (NY) 2016;41:1522-31. [PMID: 26971341 DOI: 10.1007/s00261-016-0703-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
256 Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology 2015;276:228-32. [DOI: 10.1148/radiol.2015142690] [Cited by in Crossref: 541] [Cited by in F6Publishing: 418] [Article Influence: 90.2] [Reference Citation Analysis]
257 Guo S, Xiao X, Wang X, Luo Q, Zhu H, Zhang H, Li H, Gong Q, Luo K. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents. Biomater Sci 2019;7:1919-32. [DOI: 10.1039/c8bm01103f] [Cited by in Crossref: 38] [Cited by in F6Publishing: 6] [Article Influence: 19.0] [Reference Citation Analysis]
258 Spanakis M, Kontopodis E, Van Cauter S, Sakkalis V, Marias K. Assessment of DCE-MRI parameters for brain tumors through implementation of physiologically-based pharmacokinetic model approaches for Gd-DOTA. J Pharmacokinet Pharmacodyn 2016;43:529-47. [PMID: 27647272 DOI: 10.1007/s10928-016-9493-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
259 Helms G, Schlumbohm C, Garea-rodriguez E, Dechent P, Fuchs E. Pharmacokinetics of the MRI contrast agent gadobutrol in common marmoset monkeys ( Callithrix jacchus ). J Med Primatol 2016;45:290-6. [DOI: 10.1111/jmp.12227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
260 Mir FF, Tomaszewski RP, Shuboni-Mulligan DD, Mallett CL, Hix JML, Ether ND, Shapiro EM. Chimeric mouse model for MRI contrast agent evaluation. Magn Reson Med 2019;82:387-94. [PMID: 30874333 DOI: 10.1002/mrm.27730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
261 Chen H, Wang GD, Sun X, Todd T, Zhang F, Xie J, Shen B. Mesoporous Silica as Nanoreactors to Prepare Gd-Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties. Adv Funct Mater 2016;26:3973-82. [DOI: 10.1002/adfm.201504177] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 7.4] [Reference Citation Analysis]
262 Doniselli FM, Albano D, Chianca V, Cimmino MA, Sconfienza LM. Gadolinium accumulation after contrast-enhanced magnetic resonance imaging: what rheumatologists should know. Clin Rheumatol 2017;36:977-80. [PMID: 28321569 DOI: 10.1007/s10067-017-3604-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
263 Salarian M, Yang H, Turaga RC, Tan S, Qiao J, Xue S, Gui Z, Peng G, Han H, Mittal P, Grossniklaus HE, Yang JJ. Precision detection of liver metastasis by collagen-targeted protein MRI contrast agent. Biomaterials 2019;224:119478. [DOI: 10.1016/j.biomaterials.2019.119478] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
264 Smith TE, Steven A, Bagert BA. Gadolinium Deposition in Neurology Clinical Practice. Ochsner J 2019;19:17-25. [PMID: 30983897 DOI: 10.31486/toj.18.0111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
265 Giovenzana GB, Negri R, Rolla GA, Tei L. Gd-Aminoethyl-DO3A Complexes: A Novel Class of pH-Sensitive MRI Contrast Agents. Eur J Inorg Chem 2012;2012:2035-9. [DOI: 10.1002/ejic.201101296] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
266 Kawel N, Santini F, Haas T, Froehlich JM, Bremerich J. The protein binding substance ibuprofen does not affect the T1 time or partition coefficient in contrast-enhanced cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:71. [PMID: 23067266 DOI: 10.1186/1532-429X-14-71] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
267 Vanasschen C, Brandt M, Ermert J, Coenen HH. Radiolabelling with isotopic mixtures of (52g/55)Mn(II) as a straight route to stable manganese complexes for bimodal PET/MR imaging. Dalton Trans 2016;45:1315-21. [PMID: 26685974 DOI: 10.1039/c5dt04270d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.6] [Reference Citation Analysis]
268 Nduom EK, Bouras A, Kaluzova M, Hadjipanayis CG. Nanotechnology applications for glioblastoma. Neurosurg Clin N Am 2012;23:439-49. [PMID: 22748656 DOI: 10.1016/j.nec.2012.04.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
269 Cao Y, Liu M, Zu G, Kuang Y, Tong X, Xiong D, Pei R. Hyperbranched poly(glycerol) as a T 1 contrast agent for tumor-targeted magnetic resonance imaging in vivo. Polym Chem 2017;8:1104-13. [DOI: 10.1039/c6py01819j] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
270 Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, Nakagawa T, Shinohara A, Matsukawa T, Yokoyama K, Cabral H, Suzuki M, Sakurai Y, Tanaka H, Ono K, Nishiyama N, Kataoka K, Takahashi H. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol 2016;142:767-75. [PMID: 26650198 DOI: 10.1007/s00432-015-2085-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
271 Fiorino G, Bonifacio C, Padrenostro M, Sposta FM, Spinelli A, Malesci A, Balzarini L, Peyrin-Biroulet L, Danese S. Comparison between 1.5 and 3.0 Tesla magnetic resonance enterography for the assessment of disease activity and complications in ileo-colonic Crohn's disease. Dig Dis Sci 2013;58:3246-55. [PMID: 23903867 DOI: 10.1007/s10620-013-2781-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
272 Ye Z, Zhou Z, Ayat N, Wu X, Jin E, Shi X, Lu ZR. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent. Contrast Media Mol Imaging 2016;11:32-40. [PMID: 26218648 DOI: 10.1002/cmmi.1655] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
273 Wang X, Sheng J, Yang M. Melanin-based nanoparticles in biomedical applications: From molecular imaging to treatment of diseases. Chinese Chemical Letters 2019;30:533-40. [DOI: 10.1016/j.cclet.2018.10.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
274 Kartamihardja AA, Nakajima T, Kameo S, Koyama H, Tsushima Y. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model. Invest Radiol 2016;51:655-60. [PMID: 27299580 DOI: 10.1097/RLI.0000000000000295] [Cited by in Crossref: 39] [Cited by in F6Publishing: 19] [Article Influence: 9.8] [Reference Citation Analysis]
275 McMahon MT, Chan KW. Developing MR probes for molecular imaging. Adv Cancer Res 2014;124:297-327. [PMID: 25287693 DOI: 10.1016/B978-0-12-411638-2.00009-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
276 Li Y, Huang Y, Wang Z, Carniato F, Xie Y, Patterson JP, Thompson MP, Andolina CM, Ditri TB, Millstone JE, Figueroa JS, Rinehart JD, Scadeng M, Botta M, Gianneschi NC. Polycatechol Nanoparticle MRI Contrast Agents. Small 2016;12:668-77. [PMID: 26681255 DOI: 10.1002/smll.201502754] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 8.7] [Reference Citation Analysis]