BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Zhao X, Liu X, Cheng K, Han X, Zhang Y, Min H, Liu G, Xu J, Shi J, Qin H, Fan H, Ren L, Nie G. A Bioinspired Nanoprobe with Multilevel Responsive T1 ‐Weighted MR Signal‐Amplification Illuminates Ultrasmall Metastases. Adv Mater 2019;32:1906799. [DOI: 10.1002/adma.201906799] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS Appl Mater Interfaces 2021;13:19679-94. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yu Z, Lou R, Pan W, Li N, Tang B. Nanoenzymes in disease diagnosis and therapy. Chem Commun 2020;56:15513-24. [DOI: 10.1039/d0cc05427e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
3 Liu M, Wu C, Ke L, Li Z, Wu YL. Emerging Biomaterials-Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. Small Methods 2021;5:e2100347. [PMID: 34927997 DOI: 10.1002/smtd.202100347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhang L, Xiao S, Kang X, Sun T, Zhou C, Xu Z, Du M, Zhang Y, Wang G, Liu Y, Zhang D, Gong M. Metabolic Conversion and Removal of Manganese Ferrite Nanoparticles in RAW264.7 Cells and Induced Alteration of Metal Transporter Gene Expression. Int J Nanomedicine 2021;16:1709-24. [PMID: 33688187 DOI: 10.2147/IJN.S289707] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114320] [Reference Citation Analysis]
6 Shen W, Zhang Y, Wan P, An L, Zhang P, Xiao C, Chen X. Antineoplastic Drug‐Free Anticancer Strategy Enabled by Host‐Defense‐Peptides‐Mimicking Synthetic Polypeptides. Adv Mater . [DOI: 10.1002/adma.202001108] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
7 Yang W, Yang S, Jiang L, Zhou Y, Yang C, Deng C. Tumor microenvironment triggered biodegradation of inorganic nanoparticles for enhanced tumor theranostics. RSC Adv 2020;10:26742-51. [DOI: 10.1039/d0ra04651e] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Liang Z, Wang Q, Liao H, Zhao M, Lee J, Yang C, Li F, Ling D. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging. Nat Commun 2021;12:3840. [PMID: 34158498 DOI: 10.1038/s41467-021-24055-2] [Reference Citation Analysis]
9 Zhang Q, Liang J, Yun SLJ, Liang K, Yang D, Gu Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomater Sci 2020;8:4129-46. [PMID: 32638731 DOI: 10.1039/d0bm00761g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang Y, Miao Y, Li G, Su M, Chen X, Zhang H, Zhang Y, Jiao W, He Y, Yi J, Liu X, Fan H. Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances 2020;8:100119. [DOI: 10.1016/j.mtadv.2020.100119] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. Adv NanoBio Res 2021;1:2000109. [DOI: 10.1002/anbr.202000109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhao M, Liang Z, Zhang B, Wang Q, Lee J, Li F, Wang Q, Ma D, Ling D. Supramolecular Container-Mediated Surface Engineering Approach for Regulating the Biological Targeting Effect of Nanoparticles. Nano Lett 2020;20:7941-7. [PMID: 33078612 DOI: 10.1021/acs.nanolett.0c02701] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Xu K, Xu N, Zhu Y, Zhang M, Tang W, Ding Y, Hu A. Co‐Assembly of Gd(III)‐Based Metallosurfactant and Conjugated Polymer Nanoparticles in Organosilica Cross‐Linked Block Copolymer Micelles for Highly Efficient MRI and Fluorescent Bimodal Imaging. Part Part Syst Charact 2020;37:2000044. [DOI: 10.1002/ppsc.202000044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhu X, Xiong H, Zhou Q, Zhao Z, Zhang Y, Li Y, Wang S, Shi S. A pH-Activatable MnCO3 Nanoparticle for Improved Magnetic Resonance Imaging of Tumor Malignancy and Metastasis. ACS Appl Mater Interfaces 2021;13:18462-71. [PMID: 33871955 DOI: 10.1021/acsami.0c22624] [Reference Citation Analysis]
15 Qi C, He J, Fu LH, He T, Blum NT, Yao X, Lin J, Huang P. Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano 2021;15:1627-39. [PMID: 33356128 DOI: 10.1021/acsnano.0c09223] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
16 Guo S, Wang X, Dai Y, Dai X, Li Z, Luo Q, Zheng X, Gu Z, Zhang H, Gong Q, Luo K. Enhancing the Efficacy of Metal-Free MRI Contrast Agents via Conjugating Nitroxides onto PEGylated Cross-Linked Poly(Carboxylate Ester). Adv Sci (Weinh) 2020;7:2000467. [PMID: 32714757 DOI: 10.1002/advs.202000467] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
17 Khatua C, Min S, Jung HJ, Shin JE, Li N, Jun I, Liu H, Bae G, Choi H, Ko MJ, Jeon YS, Kim YJ, Lee J, Ko M, Shim G, Shin H, Lee S, Chung S, Kim YK, Song J, Dravid VP, Kang H. In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. Nano Lett 2020;20:4188-96. [DOI: 10.1021/acs.nanolett.0c00559] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
18 Miao Y, Zhang H, Cai J, Chen Y, Ma H, Zhang S, Yi JB, Liu X, Bay BH, Guo Y, Zhou X, Gu N, Fan H. Structure-Relaxivity Mechanism of an Ultrasmall Ferrite Nanoparticle T1 MR Contrast Agent: The Impact of Dopants Controlled Crystalline Core and Surface Disordered Shell. Nano Lett 2021;21:1115-23. [PMID: 33448859 DOI: 10.1021/acs.nanolett.0c04574] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Li Y, Ma X, Liu X, Yue Y, Cheng K, Zhang Q, Nie G, Zhao X, Ren L. Redox-Responsive Functional Iron Oxide Nanocrystals for Magnetic Resonance Imaging-Guided Tumor Hyperthermia Therapy and Heat-Mediated Immune Activation. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00898] [Reference Citation Analysis]
20 Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horiz 2021;6:696-717. [PMID: 34286791 DOI: 10.1039/d1nh00179e] [Reference Citation Analysis]
21 Liu K, Liao Y, Zhou Z, Zhang L, Jiang Y, Lu H, Xu T, Yang D, Gao Q, Li Z, Tan S, Cao W, Chen F, Li G. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Biomaterials 2022;282:121383. [DOI: 10.1016/j.biomaterials.2022.121383] [Reference Citation Analysis]