BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater 2021;33:e1906539. [PMID: 32495404 DOI: 10.1002/adma.201906539] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang Z, Wang Y, Wang Y, Wei C, Deng Y, Chen H, Shen J, Ke H. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced T1-weighted magnetic resonance imaging and photothermal tumor ablation. J Mater Chem B 2021;9:1781-6. [PMID: 33594402 DOI: 10.1039/d1tb00032b] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021;13:943. [PMID: 34202604 DOI: 10.3390/pharmaceutics13070943] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Hindel S, Heuchel L, Lüdemann L. Fractional calculus tracer kinetic compartment model for quantification of microvascular perfusion. Physiol Meas 2021;42. [PMID: 34049294 DOI: 10.1088/1361-6579/ac067c] [Reference Citation Analysis]
4 Mohapatra A, Sathiyamoorthy P, Park IK. Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics 2021;13:1867. [PMID: 34834282 DOI: 10.3390/pharmaceutics13111867] [Reference Citation Analysis]
5 Wei R, Xu Y, Xue M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications. J Mater Chem B 2021;9:1965-79. [PMID: 33595050 DOI: 10.1039/d0tb02858d] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Janik-Olchawa N, Drozdz A, Ryszawy D, Pudelek M, Planeta K, Setkowicz Z, Sniegocki M, Wytrwal-Sarna M, Gajewska M, Chwiej J. The influence of IONPs core size on their biocompatibility and activity in in vitro cellular models. Sci Rep 2021;11:21808. [PMID: 34750434 DOI: 10.1038/s41598-021-01237-y] [Reference Citation Analysis]
7 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem 2020;132:21329-36. [DOI: 10.1002/ange.202009380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang L, Xiao S, Kang X, Sun T, Zhou C, Xu Z, Du M, Zhang Y, Wang G, Liu Y, Zhang D, Gong M. Metabolic Conversion and Removal of Manganese Ferrite Nanoparticles in RAW264.7 Cells and Induced Alteration of Metal Transporter Gene Expression. Int J Nanomedicine 2021;16:1709-24. [PMID: 33688187 DOI: 10.2147/IJN.S289707] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. Materials (Basel) 2021;14:3611. [PMID: 34203371 DOI: 10.3390/ma14133611] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ma Y, Yan C, Guo Z, Tan G, Niu D, Li Y, Zhu W. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed 2020;59:21143-50. [DOI: 10.1002/anie.202009380] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
11 Mahajan R, Suriyanarayanan S, Nicholls IA. Improved Solvothermal Synthesis of γ-Fe2O3 Magnetic Nanoparticles for SiO2 Coating. Nanomaterials (Basel) 2021;11:1889. [PMID: 34443719 DOI: 10.3390/nano11081889] [Reference Citation Analysis]
12 Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Reference Citation Analysis]
13 Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials 2022;12:214-45. [DOI: 10.1016/j.bioactmat.2021.10.014] [Reference Citation Analysis]
14 Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W. Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Adv Mater 2021;:e2107150. [PMID: 34897858 DOI: 10.1002/adma.202107150] [Reference Citation Analysis]
15 Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. Adv Mater 2021;:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Reference Citation Analysis]
16 Xie J, Zhou Z, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Facile Fabrication of BiF3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging. Nanoscale Res Lett 2021;16:131. [PMID: 34390420 DOI: 10.1186/s11671-021-03591-2] [Reference Citation Analysis]
17 Ma Z, Mohapatra J, Wei K, Liu JP, Sun S. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chem Rev 2021. [PMID: 34968046 DOI: 10.1021/acs.chemrev.1c00860] [Reference Citation Analysis]
18 Zhang T, Wang Z, Xiang H, Xu X, Zou J, Lu C. Biocompatible Superparamagnetic Europium-Doped Iron Oxide Nanoparticle Clusters as Multifunctional Nanoprobes for Multimodal In Vivo Imaging. ACS Appl Mater Interfaces 2021;13:33850-61. [PMID: 34282885 DOI: 10.1021/acsami.1c07739] [Reference Citation Analysis]
19 Miao Y, Zhang H, Cai J, Chen Y, Ma H, Zhang S, Yi JB, Liu X, Bay BH, Guo Y, Zhou X, Gu N, Fan H. Structure-Relaxivity Mechanism of an Ultrasmall Ferrite Nanoparticle T1 MR Contrast Agent: The Impact of Dopants Controlled Crystalline Core and Surface Disordered Shell. Nano Lett 2021;21:1115-23. [PMID: 33448859 DOI: 10.1021/acs.nanolett.0c04574] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021;9:647905. [PMID: 33928072 DOI: 10.3389/fbioe.2021.647905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Li Q, Hu E, Yu K, Lu M, Xie R, Lu F, Lu B, Bao R, Lan G. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact Mater 2021;6:4625-39. [PMID: 34095621 DOI: 10.1016/j.bioactmat.2021.05.006] [Reference Citation Analysis]
22 Dong Y, Wen CY, She Y, Zhang Y, Chen Y, Zeng J. Magnetic Relaxation Switching Immunoassay Based on Hydrogen Peroxide-Mediated Assembly of Ag@Au-Fe3 O4 Nanoprobe for Detection of Aflatoxin B1. Small 2021;:e2104596. [PMID: 34741431 DOI: 10.1002/smll.202104596] [Reference Citation Analysis]
23 Pan C, Lin J, Zheng J, Liu C, Yuan B, Akakuru OU, Zubair Iqbal M, Fang Q, Hu J, Chen J, Lin J, Dai Q, Guo X, Li Z, Zhang T, Xu C, Ma X, Chen T, Wu A, Jin Y. An intelligent T1-T2 switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques. Nanoscale 2021;13:6461-74. [PMID: 33885526 DOI: 10.1039/d0nr08039j] [Reference Citation Analysis]
24 Feng J, Ren W, Gao J, Li F, Kong F, Yao B, Dong Y. Core–Shell-Structured Covalent–Organic Framework as a Nanoagent for Single-Laser-Induced Phototherapy. ACS Appl Mater Interfaces 2021;13:17243-54. [DOI: 10.1021/acsami.1c01125] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
25 Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021;8:134. [PMID: 34677207 DOI: 10.3390/bioengineering8100134] [Reference Citation Analysis]
26 Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, Xiao Z, Stueber D, Avendano C, Decuzzi P, Pautler RG, Colvin VL. 2D Gadolinium Oxide Nanoplates as T1 Magnetic Resonance Imaging Contrast Agents. Adv Healthc Mater 2021;10:e2001780. [PMID: 33882196 DOI: 10.1002/adhm.202001780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Vassal M, Rebelo S, Pereira ML. Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021;22:8061. [PMID: 34360825 DOI: 10.3390/ijms22158061] [Reference Citation Analysis]
28 Etemadi H, Buchanan JK, Kandile NG, Plieger PG. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomater Sci Eng 2021. [PMID: 34786932 DOI: 10.1021/acsbiomaterials.1c00938] [Reference Citation Analysis]
29 Qin S, Xue J, Jia E, Ren N, Dong Y, Zhou C. Achieving NIR Light-Mediated Tumor-Specific Fenton Reaction-Assisted Oncotherapy by Using Magnetic Nanoclusters. Front Oncol 2021;11:777295. [PMID: 34760710 DOI: 10.3389/fonc.2021.777295] [Reference Citation Analysis]
30 Zhu Y, Wang Z, Zhao R, Zhou Y, Feng L, Gai S, Yang P. Pt Decorated Ti3C2Tx MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics. ACS Nano 2022. [PMID: 35040328 DOI: 10.1021/acsnano.1c10732] [Reference Citation Analysis]
31 Wang Q, Huang L, Zhu X, Zhou Y, Wang J, Su D, Liu L. MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent. Mol Pharm 2021;18:4543-52. [PMID: 34677979 DOI: 10.1021/acs.molpharmaceut.1c00749] [Reference Citation Analysis]
32 Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horiz 2021;6:696-717. [PMID: 34286791 DOI: 10.1039/d1nh00179e] [Reference Citation Analysis]
33 Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021;170:142-99. [PMID: 33428994 DOI: 10.1016/j.addr.2021.01.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
34 Jia H, Sun J, Dong M, Dong H, Zhang H, Xie X. Deep eutectic solvent electrolysis for preparing water-soluble magnetic iron oxide nanoparticles. Nanoscale 2021;13:19004-11. [PMID: 34755160 DOI: 10.1039/d1nr05813d] [Reference Citation Analysis]
35 Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021;16:024101. [PMID: 33472182 DOI: 10.1088/1748-605X/abddf4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Wang X, Chen L, Ge J, Afshari MJ, Yang L, Miao Q, Duan R, Cui J, Liu C, Zeng J, Zhong J, Gao M. Rational Constructed Ultra-Small Iron Oxide Nanoprobes Manifesting High Performance for T1-Weighted Magnetic Resonance Imaging of Glioblastoma. Nanomaterials (Basel) 2021;11:2601. [PMID: 34685042 DOI: 10.3390/nano11102601] [Reference Citation Analysis]