BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Wang GD, Tang W, Todd T, Zhen Z, Tsang C, Hekmatyar K, Cowger T, Hubbard R, Zhang W, Stickney J, Shen B, Xie J. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater 2014;26:6761-6. [PMID: 25178894 DOI: 10.1002/adma.201402964] [Cited by in Crossref: 117] [Cited by in F6Publishing: 106] [Article Influence: 16.7] [Reference Citation Analysis]
Number Citing Articles
1 Tang T, Sun X, Xu X, Bian Y, Ma X, Chen N. Development of hollow ferrogadolinium nanonetworks for dual-modal MRI guided cancer chemotherapy. RSC Adv 2019;9:2559-66. [DOI: 10.1039/c8ra09102a] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Vinluan RD 3rd, Zheng J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 2015;10:2781-94. [PMID: 26377047 DOI: 10.2217/nnm.15.97] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
3 Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 2016;12:738-53. [PMID: 27795549 DOI: 10.1038/nrneph.2016.156] [Cited by in Crossref: 95] [Cited by in F6Publishing: 82] [Article Influence: 19.0] [Reference Citation Analysis]
4 Sun W, Luo L, Feng Y, Qiu Y, Shi C, Meng S, Chen X, Chen H. Gadolinium–Rose Bengal Coordination Polymer Nanodots for MR‐/Fluorescence‐Image‐Guided Radiation and Photodynamic Therapy. Adv Mater 2020;32:2000377. [DOI: 10.1002/adma.202000377] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 26.0] [Reference Citation Analysis]
5 Zhao P, Liu S, Wang L, Liu G, Cheng Y, Lin M, Sui K, Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydr Polym 2020;241:116344. [PMID: 32507204 DOI: 10.1016/j.carbpol.2020.116344] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
6 Wu M, Tseng W. Rapid, facile, reagentless, and room-temperature conjugation of monolayer MoS 2 nanosheets with dual-fluorophore-labeled flares as nanoprobes for ratiometric sensing of TK1 mRNA in living cells. J Mater Chem B 2020;8:1692-8. [DOI: 10.1039/c9tb02770j] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Sun K, Xu C, Hu T, Lin C, Wang Y, Li Y, Li L, Wang Y. γ-Fe2O3/La-MOFs@SiO2 for magnetic resonance/fluorescence dual mode imaging and pH-drug delivery. Materials Letters 2018;228:216-9. [DOI: 10.1016/j.matlet.2018.06.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
8 Shi Y, Pan Y, Zhong J, Yang J, Zheng J, Cheng J, Song R, Yi C. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015;93:742-50. [DOI: 10.1016/j.carbon.2015.05.100] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 10.8] [Reference Citation Analysis]
9 Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019;19:e1900272. [PMID: 31531955 DOI: 10.1002/mabi.201900272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
10 Wang Y, Li M, Luo T, Jiao M, Jin S, Dou P, Zuo F, Wu C, Han C, Li J, Xu K, Zheng S. Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. Mater Sci Eng C Mater Biol Appl 2021;127:112190. [PMID: 34225846 DOI: 10.1016/j.msec.2021.112190] [Reference Citation Analysis]
11 Zhu Q, Pan F, Tian Y, Tang W, Yuan Y, Hu A. Facile synthesis of Gd( iii ) metallosurfactant-functionalized carbon nanodots with high relaxivity as bimodal imaging probes. RSC Adv 2016;6:29441-7. [DOI: 10.1039/c6ra02654k] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
12 Li Y, Li B, Wang X, Meng Y, Bai L, Zheng Y. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots. Nanomedicine (Lond) 2020;15:2385-98. [PMID: 32914700 DOI: 10.2217/nnm-2020-0160] [Reference Citation Analysis]
13 Chen Y, Wang J, Liu J, Lu L. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging. Zeitschrift für Physikalische Chemie 2018;232:1733-40. [DOI: 10.1515/zpch-2018-1145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
14 Xu N, Du J, Yao Q, Ge H, Li H, Xu F, Gao F, Xian L, Fan J, Peng X. Precise photodynamic therapy: Penetrating the nuclear envelope with photosensitive carbon dots. Carbon 2020;159:74-82. [DOI: 10.1016/j.carbon.2019.12.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 21.0] [Reference Citation Analysis]
15 Bhardwaj K, Pradhan S, Basel S, Clarke M, Brito B, Thapa S, Roy P, Borthakur S, Saikia L, Shankar A, Stasiuk GJ, Pariyar A, Tamang S. Tunable NIR-II emitting silver chalcogenide quantum dots using thio/selenourea precursors: preparation of an MRI/NIR-II multimodal imaging agent. Dalton Trans 2020;49:15425-32. [PMID: 33140785 DOI: 10.1039/d0dt02974b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
16 Xu J, Yu M, Carter P, Hernandez E, Dang A, Kapur P, Hsieh JT, Zheng J. In Vivo X-ray Imaging of Transport of Renal Clearable Gold Nanoparticles in the Kidneys. Angew Chem Int Ed Engl 2017;56:13356-60. [PMID: 28881491 DOI: 10.1002/anie.201707819] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
17 Du F, Zhang L, Zhang L, Zhang M, Gong A, Tan Y, Miao J, Gong Y, Sun M, Ju H, Wu C, Zou S. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 2017;121:109-20. [PMID: 28086179 DOI: 10.1016/j.biomaterials.2016.07.008] [Cited by in Crossref: 88] [Cited by in F6Publishing: 68] [Article Influence: 17.6] [Reference Citation Analysis]
18 Shi H, Yan R, Wu L, Sun Y, Liu S, Zhou Z, He J, Ye D. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomaterialia 2018;72:256-65. [DOI: 10.1016/j.actbio.2018.03.035] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 17.0] [Reference Citation Analysis]
19 Vinluan RD, Yu M, Gannaway M, Sullins J, Xu J, Zheng J. Labeling Monomeric Insulin with Renal-Clearable Luminescent Gold Nanoparticles. Bioconjugate Chem 2015;26:2435-41. [DOI: 10.1021/acs.bioconjchem.5b00490] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
20 Zhao X, Dong L, Ming Y, Wang M, Lu Z, Xu Y, Li H. A magnetofluorescent boron-doped carbon dots as a metal-free bimodal probe. Talanta 2019;200:9-14. [PMID: 31036230 DOI: 10.1016/j.talanta.2019.03.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
21 Ma X, Lee C, Zhang T, Cai J, Wang H, Jiang F, Wu Z, Xie J, Jiang G, Li Z. Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer. J Nanobiotechnology 2021;19:284. [PMID: 34551763 DOI: 10.1186/s12951-021-01018-9] [Reference Citation Analysis]
22 Lee BH, Hasan MT, Lichthardt D, Gonzalez-Rodriguez R, Naumov AV. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. Nanotechnology 2021;32:095103. [PMID: 33126228 DOI: 10.1088/1361-6528/abc642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, Ai H, Gao J. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T 1 contrast ability. Nanoscale 2016;8:3768-74. [DOI: 10.1039/c5nr08402d] [Cited by in Crossref: 42] [Cited by in F6Publishing: 8] [Article Influence: 8.4] [Reference Citation Analysis]
24 Pan Y, Yang J, Fang Y, Zheng J, Song R, Yi C. One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. J Mater Chem B 2017;5:92-101. [DOI: 10.1039/c6tb02115h] [Cited by in Crossref: 50] [Cited by in F6Publishing: 2] [Article Influence: 12.5] [Reference Citation Analysis]
25 Wu C, Cai R, Zhao T, Wu L, Zhang L, Jin J, Xu L, Li P, Li T, Zhang M, Du F. Hyaluronic Acid-Functionalized Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging-Guided Radiotherapy of Tumors. Nanoscale Res Lett 2020;15:94. [PMID: 32335719 DOI: 10.1186/s11671-020-03318-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
26 Pan Y, Chen W, Yang J, Zheng J, Yang M, Yi C. Facile Synthesis of Gadolinium Chelate-Conjugated Polymer Nanoparticles for Fluorescence/Magnetic Resonance Dual-Modal Imaging. Anal Chem 2018;90:1992-2000. [DOI: 10.1021/acs.analchem.7b04078] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
27 Chen Y, Shi J. Mesoporous carbon biomaterials. Sci China Mater 2015;58:241-57. [DOI: 10.1007/s40843-015-0037-2] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
28 Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1542. [PMID: 30084539 DOI: 10.1002/wnan.1542] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
29 Xu J, Peng C, Yu M, Zheng J. Renal clearable noble metal nanoparticles: photoluminescence, elimination, and biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 28070988 DOI: 10.1002/wnan.1453] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
30 Zheng X, Li L, Sun L, Yan C. Lanthanide Nanoparticles. Including Actinides. Elsevier; 2016. pp. 301-35. [DOI: 10.1016/bs.hpcre.2016.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
31 Zhou X, Ye M, Han Y, Tang J, Qian Y, Hu H, Shen Y. Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent. Biomater Sci 2017;5:1588-95. [DOI: 10.1039/c7bm00126f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
32 Fang Y, Zhou L, Yang J, Zhao J, Zhang Y, Yi C. Multilevel, Dual-Readout Logic Operations Based on pH-Responsive Holmium(III)-Doped Carbon Nanodots. ACS Appl Bio Mater 2020;3:3761-9. [DOI: 10.1021/acsabm.0c00356] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
33 Huang H, Hernandez R, Geng J, Sun H, Song W, Chen F, Graves SA, Nickles RJ, Cheng C, Cai W, Lovell JF. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 2016;76:25-32. [DOI: 10.1016/j.biomaterials.2015.10.049] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
34 Liu R, Liang S, Jiang C, Zhang L, Yuan T, Li P, Xu Z, Xu H, Chu PK. Smart polymeric particle encapsulated gadolinium oxide and europium: theranostic probes for magnetic resonance/optical imaging and antitumor drug delivery. J Mater Chem B 2016;4:1100-7. [DOI: 10.1039/c5tb02083b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
35 Yan Y, Sun X, Shen B. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging. Oncotarget 2017;8:43491-505. [PMID: 28415647 DOI: 10.18632/oncotarget.16482] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
36 Song X, Goswami N, Yang H, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016;141:3126-40. [DOI: 10.1039/c6an00773b] [Cited by in Crossref: 210] [Cited by in F6Publishing: 26] [Article Influence: 42.0] [Reference Citation Analysis]
37 He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Adv Mater 2019;31:1902409. [DOI: 10.1002/adma.201902409] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 34.0] [Reference Citation Analysis]
38 Chen H, Wang GD, Sun X, Todd T, Zhang F, Xie J, Shen B. Mesoporous Silica as Nanoreactors to Prepare Gd-Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties. Adv Funct Mater 2016;26:3973-82. [DOI: 10.1002/adfm.201504177] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 7.4] [Reference Citation Analysis]
39 Abdellatif AAH. A plausible way for excretion of metal nanoparticles via active targeting. Drug Dev Ind Pharm 2020;46:744-50. [PMID: 32250174 DOI: 10.1080/03639045.2020.1752710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Yu M, Zheng J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano 2015;9:6655-74. [PMID: 26149184 DOI: 10.1021/acsnano.5b01320] [Cited by in Crossref: 484] [Cited by in F6Publishing: 454] [Article Influence: 80.7] [Reference Citation Analysis]
41 Gedda G, Yao Y, Chen S, Ghule AV, Ling Y, Chang J. Facile synthesis of gold/gadolinium-doped carbon quantum dot nanocomposites for magnetic resonance imaging and photothermal ablation therapy. J Mater Chem B 2017;5:6282-91. [DOI: 10.1039/c7tb01139c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
42 Qu D, Wang X, Bao Y, Sun Z. Recent advance of carbon dots in bio-related applications. J Phys Mater 2020;3:022003. [DOI: 10.1088/2515-7639/ab7cb9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 12.0] [Reference Citation Analysis]
43 Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J, Liu L, Jiang L, Wang D, Dong C, Yan M, Wang Q, Bi H. Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Appl Bio Mater 2019;2:2317-38. [DOI: 10.1021/acsabm.9b00112] [Cited by in Crossref: 90] [Cited by in F6Publishing: 39] [Article Influence: 45.0] [Reference Citation Analysis]
44 Wang H, Revia R, Mu Q, Lin G, Yen C, Zhang M. Single-layer boron-doped graphene quantum dots for contrast-enhanced in vivo T1-weighted MRI. Nanoscale Horiz 2020;5:573-9. [PMID: 32118222 DOI: 10.1039/c9nh00608g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 12.0] [Reference Citation Analysis]
45 Zhang J, Yu S. Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today 2016;19:382-93. [DOI: 10.1016/j.mattod.2015.11.008] [Cited by in Crossref: 371] [Cited by in F6Publishing: 228] [Article Influence: 74.2] [Reference Citation Analysis]
46 Wang J, Hu X, Ding H, Huang X, Xu M, Li Z, Wang D, Yan X, Lu Y, Xu Y, Chen Y, Morais PC, Tian Y, Zhang R, Bi H. Fluorine and Nitrogen Co-Doped Carbon Dot Complexation with Fe(III) as a T1 Contrast Agent for Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2019;11:18203-12. [DOI: 10.1021/acsami.9b03644] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
47 Chen Y, Li N, Wang J, Zhang X, Pan W, Yu L, Tang B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019;9:167-78. [PMID: 30662560 DOI: 10.7150/thno.28033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
48 Lin L, Luo Y, Tsai P, Wang J, Chen X. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. TrAC Trends in Analytical Chemistry 2018;103:87-101. [DOI: 10.1016/j.trac.2018.03.015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 36] [Article Influence: 23.0] [Reference Citation Analysis]
49 Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015;115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Cited by in Crossref: 654] [Cited by in F6Publishing: 498] [Article Influence: 109.0] [Reference Citation Analysis]
50 Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1541. [PMID: 30063116 DOI: 10.1002/wnan.1541] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
51 Liu F, He X, Zhang J, Zhang H, Wang Z. Employing Tryptone as a General Phase Transfer Agent to Produce Renal Clearable Nanodots for Bioimaging. Small 2015;11:3676-85. [PMID: 25914195 DOI: 10.1002/smll.201500287] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
52 Yu M, Liu J, Ning X, Zheng J. High-contrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores. Angew Chem 2015;127:15654-8. [DOI: 10.1002/ange.201507868] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
53 Wu Y, Li H, Yan Y, Wang K, Cheng Y, Li Y, Zhu X, Xie J, Sun X. Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer. Int J Nanomedicine 2020;15:4691-703. [PMID: 32636625 DOI: 10.2147/IJN.S244172] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
54 Im H. Excretion and Clearance. In: Lee DS, editor. Radionanomedicine. Cham: Springer International Publishing; 2018. pp. 347-68. [DOI: 10.1007/978-3-319-67720-0_19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
55 Ji C, Zhou Y, Leblanc RM, Peng Z. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens 2020;5:2724-41. [DOI: 10.1021/acssensors.0c01556] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 33.0] [Reference Citation Analysis]
56 Lee C, Liu X, Zhang W, Duncan MA, Jiang F, Kim C, Yan X, Teng Y, Wang H, Jiang W, Li Z, Xie J. Ultrasmall Gd@Cdots as a radiosensitizing agent for non-small cell lung cancer. Nanoscale 2021;13:9252-63. [PMID: 33982686 DOI: 10.1039/d0nr08166c] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Atabaev TS. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview. Nanomaterials (Basel) 2018;8:E342. [PMID: 29783639 DOI: 10.3390/nano8050342] [Cited by in Crossref: 84] [Cited by in F6Publishing: 62] [Article Influence: 28.0] [Reference Citation Analysis]
58 Fahmi MZ, Chen JK, Huang CC, Ling YC, Chang JY. Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. J Mater Chem B 2015;3:5532-43. [PMID: 32262524 DOI: 10.1039/c5tb00289c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
59 Wei Q, Chen Y, Ma X, Ji J, Qiao Y, Zhou B, Ma F, Ling D, Zhang H, Tian M, Tian J, Zhou M. High-Efficient Clearable Nanoparticles for Multi-Modal Imaging and Image-Guided Cancer Therapy. Adv Funct Mater 2018;28:1704634. [DOI: 10.1002/adfm.201704634] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
60 Wang H, Revia R, Wang K, Kant RJ, Mu Q, Gai Z, Hong K, Zhang M. Paramagnetic Properties of Metal-Free Boron-Doped Graphene Quantum Dots and Their Application for Safe Magnetic Resonance Imaging. Adv Mater 2017;29. [PMID: 28026064 DOI: 10.1002/adma.201605416] [Cited by in Crossref: 72] [Cited by in F6Publishing: 49] [Article Influence: 14.4] [Reference Citation Analysis]
61 Fang Y, Zhou L, Zhao J, Zhang Y, Yang M, Yi C. Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluorescence and magnetic resonance properties for dual-readout logic gate operations. Carbon 2020;166:265-72. [DOI: 10.1016/j.carbon.2020.05.060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
62 Zhu Q, Yuan Z, Qian W, Li Y, Qiu Z, Tang W, Wang J, Ding Y, Hu A. Spherical Polyelectrolyte Brushes as a Novel Platform for Paramagnetic Relaxation Enhancement and Passive Tumor Targeting. Adv Healthc Mater 2017;6. [PMID: 28371515 DOI: 10.1002/adhm.201700071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Lecroy GE, Yang S, Yang F, Liu Y, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun Y. Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews 2016;320-321:66-81. [DOI: 10.1016/j.ccr.2016.02.017] [Cited by in Crossref: 88] [Cited by in F6Publishing: 55] [Article Influence: 17.6] [Reference Citation Analysis]
64 Patel KD, Singh RK, Kim H. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69. [DOI: 10.1039/c8mh00966j] [Cited by in Crossref: 108] [Cited by in F6Publishing: 3] [Article Influence: 54.0] [Reference Citation Analysis]
65 Yang D, Yang G, Gai S, He F, Lv R, Dai Y, Yang P. Imaging-Guided and Light-Triggered Chemo-/Photodynamic/Photothermal Therapy Based on Gd (III) Chelated Mesoporous Silica Hybrid Spheres. ACS Biomater Sci Eng 2016;2:2058-71. [DOI: 10.1021/acsbiomaterials.6b00462] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
66 Li L, Lu C, Li S, Liu S, Wang L, Cai W, Xu W, Yang X, Liu Y, Zhang R. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications. J Mater Chem B 2017;5:1935-42. [PMID: 32263947 DOI: 10.1039/c6tb03003c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 2] [Article Influence: 6.8] [Reference Citation Analysis]
67 Han C, Xie T, Wang K, Jin S, Li K, Dou P, Yu N, Xu K. Development of fluorescence/MR dual-modal manganese-nitrogen-doped carbon nanosheets as an efficient contrast agent for targeted ovarian carcinoma imaging. J Nanobiotechnology 2020;18:175. [PMID: 33256741 DOI: 10.1186/s12951-020-00736-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Zhang M, Zhai X, Sun M, Ma T, Huang Y, Huang B, Du Y, Yan C. When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chem Soc Rev 2020;49:9220-48. [PMID: 33165456 DOI: 10.1039/d0cs00462f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
69 Wu Y, Yan Y, Gao X, Yang L, Li Y, Guo X, Xie J, Wang K, Sun X. Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102074. [DOI: 10.1016/j.nano.2019.102074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Yu M, Liu J, Ning X, Zheng J. High-contrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores. Angew Chem Int Ed Engl 2015;54:15434-8. [PMID: 26510715 DOI: 10.1002/anie.201507868] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 10.7] [Reference Citation Analysis]
71 Zhou B, Zhao J, Qiao Y, Wei Q, He J, Li W, Zhong D, Ma F, Li Y, Zhou M. Simultaneous multimodal imaging and photothermal therapy via renal-clearable manganese-doped copper sulfide nanodots. Applied Materials Today 2018;13:285-97. [DOI: 10.1016/j.apmt.2018.09.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
72 Yu C, Xuan T, Chen Y, Zhao Z, Liu X, Lian G, Li H. Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. Journal of Alloys and Compounds 2016;688:611-9. [DOI: 10.1016/j.jallcom.2016.07.226] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
73 Fang Y, Jia J, Yang J, Zheng J, Yi C. Facile preparation of holmium(III)-doped carbon nanodots for fluorescence/magnetic resonance dual-modal bioimaging. Chinese Chemical Letters 2018;29:1277-80. [DOI: 10.1016/j.cclet.2017.10.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
74 Jia Q, Zhao Z, Liang K, Nan F, Li Y, Wang J, Ge J, Wang P. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 2020;4:449-71. [DOI: 10.1039/c9qm00667b] [Cited by in Crossref: 38] [Article Influence: 38.0] [Reference Citation Analysis]
75 Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S, Barnhart TE, Cai W, Liu Z. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015;9:950-60. [PMID: 25562533 DOI: 10.1021/nn506757x] [Cited by in Crossref: 374] [Cited by in F6Publishing: 338] [Article Influence: 62.3] [Reference Citation Analysis]
76 Wang X, Li X, Li X, Wang Y, Han Q, Li J. Determination of 2,4,6-trinitrophenol by in-situ assembly of SBA-15 with multi-hydroxyl carbon dots. Analytica Chimica Acta 2020;1098:170-80. [DOI: 10.1016/j.aca.2019.11.061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 8.0] [Reference Citation Analysis]
77 Yi C, Pan Y, Fang Y. Surface Engineering of Carbon Nanodots (C-Dots) for Biomedical Applications. Novel Nanomaterials for Biomedical, Environmental and Energy Applications. Elsevier; 2019. pp. 137-88. [DOI: 10.1016/b978-0-12-814497-8.00005-9] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
78 Tang S, Peng C, Xu J, Du B, Wang Q, Vinluan RD, Yu M, Kim MJ, Zheng J. Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density. Angew Chem 2016;128:16273-7. [DOI: 10.1002/ange.201609043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
79 Wang D, Zhou J, Chen R, Shi R, Zhao G, Xia G, Li R, Liu Z, Tian J, Wang H, Guo Z, Wang H, Chen Q. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials 2016;100:27-40. [DOI: 10.1016/j.biomaterials.2016.05.027] [Cited by in Crossref: 160] [Cited by in F6Publishing: 143] [Article Influence: 32.0] [Reference Citation Analysis]
80 Jin Y, Ni D, Zhang J, Han F, Wang J, Gao L, Zhang H, Liu Y, Cui Z, Yao Z, Feng X, Bu W. Targeting Upconversion Nanoprobes for Magnetic Resonance Imaging of Early Colon Cancer. Part Part Syst Charact 2017;34:1600393. [DOI: 10.1002/ppsc.201600393] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
81 Ostadhossein F, Pan D. Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27791335 DOI: 10.1002/wnan.1436] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
82 Xu J, Yu M, Carter P, Hernandez E, Dang A, Kapur P, Hsieh J, Zheng J. In Vivo X-ray Imaging of Transport of Renal Clearable Gold Nanoparticles in the Kidneys. Angew Chem 2017;129:13541-5. [DOI: 10.1002/ange.201707819] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
83 Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020;25:E5072. [PMID: 33139643 DOI: 10.3390/molecules25215072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Zhou B, Xiong Z, Wang P, Peng C, Shen M, Mignani S, Majoral JP, Shi X. Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Deliv 2018;25:178-86. [PMID: 29301434 DOI: 10.1080/10717544.2017.1422299] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
85 Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release 2020;322:64-80. [DOI: 10.1016/j.jconrel.2020.03.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
86 Younis SA, Bhardwaj N, Bhardwaj SK, Kim K, Deep A. Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coordination Chemistry Reviews 2021;429:213620. [DOI: 10.1016/j.ccr.2020.213620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
87 Zhao Y, Hao X, Lu W, Wang R, Shan X, Chen Q, Sun G, Liu J. Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging. ACS Appl Nano Mater 2018;1:2544-51. [DOI: 10.1021/acsanm.8b00137] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
88 Tang S, Peng C, Xu J, Du B, Wang Q, Vinluan RD 3rd, Yu M, Kim MJ, Zheng J. Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density. Angew Chem Int Ed Engl 2016;55:16039-43. [PMID: 27882633 DOI: 10.1002/anie.201609043] [Cited by in Crossref: 63] [Cited by in F6Publishing: 57] [Article Influence: 12.6] [Reference Citation Analysis]
89 Zheng S, Yu N, Han C, Xie T, Dou B, Kong Y, Zuo F, Shi M, Xu K. Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling. Biochem Biophys Res Commun 2019;511:207-13. [PMID: 30777335 DOI: 10.1016/j.bbrc.2019.01.098] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
90 Chen H, Qiu Y, Ding D, Lin H, Sun W, Wang GD, Huang W, Zhang W, Lee D, Liu G, Xie J, Chen X. Gadolinium-Encapsulated Graphene Carbon Nanotheranostics for Imaging-Guided Photodynamic Therapy. Adv Mater 2018;:e1802748. [PMID: 30035840 DOI: 10.1002/adma.201802748] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 24.0] [Reference Citation Analysis]
91 Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018;8:2521-48. [PMID: 29721097 DOI: 10.7150/thno.23789] [Cited by in Crossref: 72] [Cited by in F6Publishing: 51] [Article Influence: 24.0] [Reference Citation Analysis]
92 Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano 2020;14:6470-97. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 41.0] [Reference Citation Analysis]
93 Yong Y, Zhou L, Zhang S, Yan L, Gu Z, Zhang G, Zhao Y. Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Mater 2016;8:e273-e273. [DOI: 10.1038/am.2016.63] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
94 Huang G, Zhang K, Chen S, Li S, Wang L, Wang L, Liu R, Gao J, Yang H. Manganese-iron layered double hydroxide: a theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J Mater Chem B 2017;5:3629-33. [DOI: 10.1039/c7tb00794a] [Cited by in Crossref: 61] [Cited by in F6Publishing: 2] [Article Influence: 15.3] [Reference Citation Analysis]
95 Liu L, Wang J, You Q, Sun Q, Song Y, Wang Y, Cheng Y, Wang S, Tan F, Li N. NIRF/PA/CT multi-modality imaging guided combined photothermal and photodynamic therapy based on tumor microenvironment-responsive nanocomposites. J Mater Chem B 2018;6:4239-50. [DOI: 10.1039/c8tb00859k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 6.7] [Reference Citation Analysis]
96 Wang GD, Chen H, Tang W, Lee D, Xie J. Gd and Eu Co-Doped Nanoscale Metal-Organic Framework as a T1-T2 Dual-Modal Contrast Agent for Magnetic Resonance Imaging. Tomography 2016;2:179-87. [PMID: 30042963 DOI: 10.18383/j.tom.2016.00226] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
97 Nimi N, Saraswathy A, Nazeer SS, Francis N, Shenoy SJ, Jayasree RS. Multifunctional hybrid nanoconstruct of zerovalent iron and carbon dots for magnetic resonance angiography and optical imaging: An In vivo study. Biomaterials 2018;171:46-56. [DOI: 10.1016/j.biomaterials.2018.04.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
98 Han C, Zhang A, Kong Y, Yu N, Xie T, Dou B, Li K, Wang Y, Li J, Xu K. Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta 2019;1067:115-28. [DOI: 10.1016/j.aca.2019.03.054] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
99 Guo T, Lin Y, Li Z, Chen S, Huang G, Lin H, Wang J, Liu G, Yang HH. Gadolinium oxysulfide-coated gold nanorods with improved stability and dual-modal magnetic resonance/photoacoustic imaging contrast enhancement for cancer theranostics. Nanoscale 2017;9:56-61. [PMID: 27906396 DOI: 10.1039/c6nr08281e] [Cited by in Crossref: 36] [Cited by in F6Publishing: 5] [Article Influence: 7.2] [Reference Citation Analysis]
100 Cheng M, Zhou L, Ma J, Mu J, Yi C, Li M. Iridium(III) and gadolinium(III) loaded and peptide-modified silica nanoparticles for photoluminescence and magnetic resonance (dual) imaging. Materials Science and Engineering: C 2019;104:109972. [DOI: 10.1016/j.msec.2019.109972] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
101 Lee M, Choi D, Jang M, Lee JH. Biocompatible and Biodegradable Fe 3+ –Melanoidin Chelate as a Potentially Safe Contrast Agent for Liver MRI. Bioconjugate Chem 2018;29:2426-35. [DOI: 10.1021/acs.bioconjchem.8b00331] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
102 Liu K, Yan X, Xu Y, Dong L, Hao L, Song Y, Li F, Su Y, Wu Y, Qian H, Tao W, Yang X, Zhou W, Lu Y. Sequential growth of CaF 2 :Yb,Er@CaF 2 :Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. Biomater Sci 2017;5:2403-15. [DOI: 10.1039/c7bm00797c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
103 Chen BB, Liu ML, Li CM, Huang CZ. Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019;270:165-90. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Cited by in Crossref: 66] [Cited by in F6Publishing: 30] [Article Influence: 33.0] [Reference Citation Analysis]
104 Zhang X, Zhang J, Wang J, Yang J, Chen J, Shen X, Deng J, Deng D, Long W, Sun Y, Liu C, Li M. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection. ACS Nano 2016;10:4511-9. [DOI: 10.1021/acsnano.6b00321] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
105 Bao YW, Hua XW, Li YH, Jia HR, Wu FG. Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2018;10:1544-55. [PMID: 29260843 DOI: 10.1021/acsami.7b15332] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 16.7] [Reference Citation Analysis]
106 Yao Z, Lai Z, Chen C, Xiao S, Yang P. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution. Analyst 2019;144:3685-90. [DOI: 10.1039/c9an00418a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]