BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lowe DM, Demaret J, Bangani N, Nakiwala JK, Goliath R, Wilkinson KA, Wilkinson RJ, Martineau AR. Differential Effect of Viable Versus Necrotic Neutrophils on Mycobacterium tuberculosis Growth and Cytokine Induction in Whole Blood. Front Immunol 2018;9:903. [PMID: 29755473 DOI: 10.3389/fimmu.2018.00903] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Alcantara CA, Glassman I, Nguyen KH, Parthasarathy A, Venketaraman V. Neutrophils in Mycobacterium tuberculosis. Vaccines 2023;11:631. [DOI: 10.3390/vaccines11030631] [Reference Citation Analysis]
2 Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023;22:14. [PMID: 36800956 DOI: 10.1186/s12941-023-00562-6] [Reference Citation Analysis]
3 Chowdhury CS, Kinsella RL, Nehls EM, Naik SK, Lane DS, Talukdar P, Chavez SM, Smirnov A, Beatty W, Kreamalmeyer D, Mattila JT, Stallings CL. Type I IFN signaling mediates NET release to promoteMycobacterium tuberculosisreplication and granuloma caseation.. [DOI: 10.1101/2022.11.29.518376] [Reference Citation Analysis]
4 Rankin AN, Hendrix SV, Naik SK, Stallings CL. Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2022;12:901590. [PMID: 35800386 DOI: 10.3389/fcimb.2022.901590] [Reference Citation Analysis]
5 Nakayama H, Oshima E, Hotta T, Hanafusa K, Nakamura K, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Identification of anti-lipoarabinomannan antibodies against mannan core and their effects on phagocytosis of mycobacteria by human neutrophils. Tuberculosis (Edinb) 2022;132:102165. [PMID: 35045376 DOI: 10.1016/j.tube.2022.102165] [Reference Citation Analysis]
6 Parker HA, Forrester L, Kaldor CD, Dickerhof N, Hampton MB. Antimicrobial Activity of Neutrophils Against Mycobacteria. Front Immunol 2021;12:782495. [PMID: 35003097 DOI: 10.3389/fimmu.2021.782495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kochuieva M, Kushnir V, Hrek I, Rohozhyn A, Klimova O, Kalashnykova Y. Dynamics of Clinical, Radiological and Laboratory Parameters in Patients with an Infiltrative Form of Firstly Diagnosed Pulmonary Tuberculosis. FM 2021. [DOI: 10.30841/2307-5112.5-6.2021.253008] [Reference Citation Analysis]
8 Comberiati P, Di Cicco M, Paravati F, Pelosi U, Di Gangi A, Arasi S, Barni S, Caimmi D, Mastrorilli C, Licari A, Chiera F. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. Int J Environ Res Public Health 2021;18:12220. [PMID: 34831976 DOI: 10.3390/ijerph182212220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Seong JS, Park CW, Moon KC, Park JS, Jun JK. Necrotizing funisitis is an indicator that intra-amniotic inflammatory response is more severe and amnionitis is more frequent in the context of the extension of inflammation into Wharton's jelly. Taiwan J Obstet Gynecol 2021;60:840-50. [PMID: 34507659 DOI: 10.1016/j.tjog.2021.07.011] [Reference Citation Analysis]
10 Olaniyan MF, Ojediran TB, Monsuru SM. Cytotoxic response of phagocytes in patients newly infected with pulmonary Mycobacterium tuberculosis determined using plasma tumor necrosis factor-alpha, malondialdehyde, and superoxide dismutase: an observational study. Journal of Bio-X Research 2021;4:120-3. [DOI: 10.1097/jbr.0000000000000085] [Reference Citation Analysis]
11 Linge IA, Apt AS. A controversial role of neutrophils in tuberculosis infection pathogenesis. Russian Journal of Infection and Immunity 2021;11:809-819. [DOI: 10.15789/2220-7619-acr-1670] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Tamburini B, Badami GD, Azgomi MS, Dieli F, La Manna MP, Caccamo N. Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021;130:102109. [PMID: 34315045 DOI: 10.1016/j.tube.2021.102109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Reduced neutrophil granular proteins and post-treatment modulation in tuberculous lymphadenitis. PLoS One 2021;16:e0253534. [PMID: 34153068 DOI: 10.1371/journal.pone.0253534] [Reference Citation Analysis]
14 Borkute RR, Woelke S, Pei G, Dorhoi A. Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021;22:4801. [PMID: 33946542 DOI: 10.3390/ijms22094801] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021;301:122-44. [PMID: 33709421 DOI: 10.1111/imr.12965] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
16 Park J, Kim H, Kwon KW, Choi HH, Kang SM, Hong JJ, Shin SJ. Toll-like receptor 4 signaling-mediated responses are critically engaged in optimal host protection against highly virulent Mycobacterium tuberculosis K infection. Virulence 2020;11:430-45. [PMID: 32403973 DOI: 10.1080/21505594.2020.1766401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wall EC, Brownridge P, Laing G, Terra VS, Mlozowa V, Denis B, Nyirenda M, Allain T, Ramos-Sevillano E, Carrol E, Collins A, Gordon SB, Lalloo DG, Wren B, Beynon R, Heyderman RS, Brown JS. CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With Streptococcus pneumoniae Meningitis. Front Cell Infect Microbiol 2020;10:603623. [PMID: 33363056 DOI: 10.3389/fcimb.2020.603623] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ivanyi J. Tuberculosis vaccination needs to avoid 'decoy' immune reactions. Tuberculosis (Edinb) 2021;126:102021. [PMID: 33254012 DOI: 10.1016/j.tube.2020.102021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
19 Mudalagiriyappa S, Sharma J, Abdelaal HFM, Kelly TC, Choi W, Vieson MD, Talaat AM, Nanjappa SG. Decoding the role of CBLB for innate immune responses regulating systemic dissemination during Non-Tuberculous Mycobacteria infection.. [DOI: 10.1101/2020.05.28.117663] [Reference Citation Analysis]
20 Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020;33:e00159-19. [PMID: 32238365 DOI: 10.1128/CMR.00159-19] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
21 Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020;77:1859-78. [DOI: 10.1007/s00018-019-03353-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
22 Andersson AM, Larsson M, Stendahl O, Blomgran R. Efferocytosis of Apoptotic Neutrophils Enhances Control of Mycobacterium tuberculosis in HIV-Coinfected Macrophages in a Myeloperoxidase-Dependent Manner. J Innate Immun 2020;12:235-47. [PMID: 31247619 DOI: 10.1159/000500861] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
23 Cross GB, Yeo BC, Hutchinson PE, Tan MC, Verma R, Lu Q, Paton NI. Impact of selective immune-cell depletion on growth of Mycobacterium tuberculosis (Mtb) in a whole-blood bactericidal activity (WBA) assay. PLoS One 2019;14:e0216616. [PMID: 31100071 DOI: 10.1371/journal.pone.0216616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019;7:350. [PMID: 31508399 DOI: 10.3389/fped.2019.00350] [Cited by in Crossref: 119] [Cited by in F6Publishing: 105] [Article Influence: 29.8] [Reference Citation Analysis]
25 Wall EC, Guerra-assunção JA, Pollara G, Venturini C, Mlozowa VS, Allain TJ, Lalloo DG, Noursadeghi M, Brown JS, Heyderman RS. Cerebrospinal fluid transcriptional analyses reveals upregulation of IL-17, Type 1 interferon transcriptional pathways and neutrophil persistence genes associated with increased mortality from pneumococcal meningitis in adults.. [DOI: 10.1101/490045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
26 Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, Wilkinson RJ, Hoal EG, Schurr E. Neutrophils: Innate Effectors of TB Resistance? Front Immunol 2018;9:2637. [PMID: 30487797 DOI: 10.3389/fimmu.2018.02637] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
27 Adam L, López-González M, Björk A, Pålsson S, Poux C, Wahren-Herlenius M, Fernández C, Spetz AL. Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Front Immunol 2018;9:1939. [PMID: 30233570 DOI: 10.3389/fimmu.2018.01939] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]