1 |
Hoang HD, Said A, Vaidya N, Gilchrist VH, Malone K, Kabilan U, Topshee S, Xiang X, Yang AD, Olagnier D, Mossman K, Beug ST, Jafarnejad SM, Workenhe ST, Graber TE, Alain T. Adaptation of transgene mRNA translation boosts the anticancer efficacy of oncolytic HSV1. J Immunother Cancer 2023;11:e006408. [PMID: 36958764 DOI: 10.1136/jitc-2022-006408] [Reference Citation Analysis]
|
2 |
Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022;14:1289. [PMID: 35746760 DOI: 10.3390/v14061289] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Fülöp Á, Torma G, Moldován N, Szenthe K, Bánáti F, Almsarrhad IAA, Csabai Z, Tombácz D, Minárovits J, Boldogkői Z. Integrative profiling of Epstein-Barr virus transcriptome using a multiplatform approach. Virol J 2022;19:7. [PMID: 34991630 DOI: 10.1186/s12985-021-01734-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
4 |
Lüscher-Dias T, Conceição IM, Schuch V, Maracaja-Coutinho V, Amaral PP, Nakaya HI. Long non-coding RNAs associated with infection and vaccine-induced immunity. Essays Biochem 2021;65:657-69. [PMID: 34528687 DOI: 10.1042/EBC20200072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
5 |
Bai CM, Rosani U, Zhang X, Xin LS, Bortoletto E, Wegner KM, Wang CM. Viral Decoys: The Only Two Herpesviruses Infecting Invertebrates Evolved Different Transcriptional Strategies to Deflect Post-Transcriptional Editing. Viruses 2021;13:1971. [PMID: 34696401 DOI: 10.3390/v13101971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Tombácz D, Prazsák I, Torma G, Csabai Z, Balázs Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. Time-Course Transcriptome Profiling of a Poxvirus Using Long-Read Full-Length Assay. Pathogens 2021;10:919. [PMID: 34451383 DOI: 10.3390/pathogens10080919] [Reference Citation Analysis]
|
7 |
Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome. Sci Rep 2021;11:14487. [PMID: 34262076 DOI: 10.1038/s41598-021-93593-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
8 |
Maróti Z, Tombácz D, Moldován N, Torma G, Jefferson VA, Csabai Z, Gulyás G, Dörmő Á, Boldogkői M, Kalmár T, Meyer F, Boldogkői Z. Time course profiling of host cell response to herpesvirus infection using nanopore and synthetic long-read transcriptome sequencing. Sci Rep 2021;11:14219. [PMID: 34244540 DOI: 10.1038/s41598-021-93142-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
9 |
Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 2021;14:239. [PMID: 34167576 DOI: 10.1186/s13104-021-05657-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
10 |
Grünberger F, Ferreira-cerca S, Grohmann D. Nanopore sequencing of RNA and cDNA molecules expands the transcriptomic toolbox in prokaryotes.. [DOI: 10.1101/2021.06.14.448286] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Brancaccio RN, Robitaille A, Dutta S, Rollison DE, Tommasino M, Gheit T. MinION nanopore sequencing and assembly of a complete human papillomavirus genome. J Virol Methods 2021;294:114180. [PMID: 33965458 DOI: 10.1016/j.jviromet.2021.114180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021;13:579. [PMID: 33808073 DOI: 10.3390/v13040579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined Nanopore and Single-Molecule Real-Time Sequencing Survey of Human Betaherpesvirus 5 Transcriptome.. [DOI: 10.1101/2021.03.30.437686] [Reference Citation Analysis]
|
14 |
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021;17:e1009441. [PMID: 33750985 DOI: 10.1371/journal.ppat.1009441] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
15 |
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021;19:1497-511. [PMID: 33815688 DOI: 10.1016/j.csbj.2021.02.020] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 20.0] [Reference Citation Analysis]
|
16 |
Torma G, Tombácz D, Csabai Z, Göbhardter D, Deim Z, Snyder M, Boldogkői Z. An Integrated Sequencing Approach for Updating the Pseudorabies Virus Transcriptome. Pathogens 2021;10:242. [PMID: 33672563 DOI: 10.3390/pathogens10020242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Moldován N, Torma G, Gulyás G, Hornyák Á, Zádori Z, Jefferson VA, Csabai Z, Boldogkői M, Tombácz D, Meyer F, Boldogkői Z. Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 2020;10:20496. [PMID: 33235226 DOI: 10.1038/s41598-020-77520-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
18 |
Kuny CV, Szpara ML. Alphaherpesvirus Genomics: Past, Present and Future. Curr Issues Mol Biol 2021;42:41-80. [PMID: 33159012 DOI: 10.21775/cimb.042.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
|
19 |
Tombácz D, Prazsák I, Csabai Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020;10:13822. [PMID: 32796917 DOI: 10.1038/s41598-020-70794-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
20 |
Olasz F, Tombácz D, Torma G, Csabai Z, Moldován N, Dörmő Á, Prazsák I, Mészáros I, Magyar T, Tamás V, Zádori Z, Boldogkői Z. Short and Long-Read Sequencing Survey of the Dynamic Transcriptomes of African Swine Fever Virus and the Host Cells. Front Genet 2020;11:758. [PMID: 32849785 DOI: 10.3389/fgene.2020.00758] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
|
21 |
Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined short and long-read sequencing reveals a complex transcriptomic architecture of African swine fever virus.. [DOI: 10.1101/2020.07.18.202820] [Reference Citation Analysis]
|
22 |
Tombácz D, Torma G, Gulyás G, Moldován N, Snyder M, Boldogkői Z. Meta-analytic approach for transcriptome profiling of herpes simplex virus type 1. Sci Data 2020;7:223. [PMID: 32647284 DOI: 10.1038/s41597-020-0558-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
23 |
Moldován N, Maróti Z, Torma G, Gulyás G, Hornyák Á, Zádori Z, Jefferson VA, Csabai Z, Boldogkői M, Kalmár T, Tombácz D, Meyer F, Boldogkői Z. Time-course Profiling of Bovine Herpesvirus Type 1 and Host Cell Transcriptomes using Multiplatform Sequencing.. [DOI: 10.1101/2020.05.25.114843] [Reference Citation Analysis]
|
24 |
Della Bartola M, Byrne S, Mullins E. Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses 2020;12:E478. [PMID: 32340210 DOI: 10.3390/v12040478] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
|
25 |
Olasz F, Tombácz D, Torma G, Csabai Z, Moldován N, Dörmő Á, Prazsák I, Mészáros I, Magyar T, Tamás V, Zádori Z, Boldogkői Z. Short and Long-read Sequencing Survey of the Dynamic Transcriptomes of African Swine Fever Virus and its Host.. [DOI: 10.1101/2020.02.27.967695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
26 |
Tombácz D, Prazsák I, Maróti Z, Moldován N, Csabai Z, Balázs Z, Dénes B, Kalmár T, Snyder M, Boldogkői Z. Long-read Assays Shed New Light on the Transcriptome Complexity of a Viral Pathogen and on Virus-Host Interaction.. [DOI: 10.1101/2020.01.27.921056] [Reference Citation Analysis]
|
27 |
Prusty BK, Whisnant AW. Revisiting the genomes of herpesviruses. Elife 2020;9:e54037. [PMID: 31944181 DOI: 10.7554/eLife.54037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
28 |
Grünberger F, Knüppel R, Jüttner M, Fenk M, Borst A, Reichelt R, Hausner W, Soppa J, Ferreira-cerca S, Grohmann D. Exploring prokaryotic transcription, operon structures, rRNA maturation and modifications using Nanopore-based native RNA sequencing.. [DOI: 10.1101/2019.12.18.880849] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
29 |
Tombácz D, Torma G, Gulyás G, Moldován N, Snyder M, Boldogkői Z. Demand for Multiplatform and Meta-analytic Approaches in Transcriptome Profiling.. [DOI: 10.1101/860312] [Reference Citation Analysis]
|