BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lyadova IV. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way? Mediators Inflamm 2017;2017:8619307. [PMID: 28626346 DOI: 10.1155/2017/8619307] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Alcantara CA, Glassman I, Nguyen KH, Parthasarathy A, Venketaraman V. Neutrophils in Mycobacterium tuberculosis. Vaccines 2023;11:631. [DOI: 10.3390/vaccines11030631] [Reference Citation Analysis]
2 Zhou C, Liang T, Jiang J, Chen J, Chen T, Huang S, Chen L, Sun X, Chen W, Zhu J, Wu S, Fan B, Liu C, Zhan X. MMP9 and STAT1 are biomarkers of the change in immune infiltration after anti-tuberculosis therapy, and the immune status can identify patients with spinal tuberculosis. Int Immunopharmacol 2023;116:109588. [PMID: 36773569 DOI: 10.1016/j.intimp.2022.109588] [Reference Citation Analysis]
3 Parthasarathy U, Kuang Y, Thakur G, Hogan JD, Wyche TP, Norton JE Jr, Killough JR, Sana TR, Beakes C, Shyong B, Zhang RN, Gutierrez DA, Filbin M, Christiani DC, Therien AG, Woelk CH, White CH, Martinelli R. Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023;26:105948. [PMID: 36756375 DOI: 10.1016/j.isci.2023.105948] [Reference Citation Analysis]
4 Peralta Alvarez MP, Marshall JL, Tanner R. Correlates of Protection from Tuberculosis. Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges 2023. [DOI: 10.1007/978-3-031-24355-4_6] [Reference Citation Analysis]
5 Kim MA, Park YE, Chong YP, Shim TS, Jo KW. Neutrophil-Lymphocyte Ratio and Monocyte-Lymphocyte Ratio According to the Radiologic Severity of Mycobacterium avium Complex Pulmonary Disease. J Korean Med Sci 2022;37:e292. [PMID: 36254530 DOI: 10.3346/jkms.2022.37.e292] [Reference Citation Analysis]
6 Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, Phelan JJ. Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Front Immunol 2022;13:984293. [DOI: 10.3389/fimmu.2022.984293] [Reference Citation Analysis]
7 Trentini MM, Kanno AI, Rodriguez D, Marques-neto LM, Eto SF, Chudzinki-tavassi AM, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant improves a short-term chemotherapy schedule in the control of tuberculosis in mice. Front Immunol 2022;13:943558. [DOI: 10.3389/fimmu.2022.943558] [Reference Citation Analysis]
8 Singh S, Allwood BW, Chiyaka TL, Kleyhans L, Naidoo CC, Moodley S, Theron G, Segal LN. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis (Edinb) 2022;136:102244. [PMID: 36007338 DOI: 10.1016/j.tube.2022.102244] [Reference Citation Analysis]
9 Bohrer AC, Castro E, Tocheny CE, Assmann M, Schwarz B, Bohrnsen E, Makiya MA, Legrand F, Hilligan KL, Baker PJ, Torres-Juarez F, Hu Z, Ma H, Wang L, Niu L, Wen Z, Lee SH, Kamenyeva O, Kauffman KD, Donato M, Sher A, Barber DL, Via LE, Scriba TJ, Khatri P, Song Y, Wong KW, Bosio CM, Klion AD, Mayer-Barber KD; Tuberculosis Imaging Program. Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Rep 2022;40:111144. [PMID: 35905725 DOI: 10.1016/j.celrep.2022.111144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Meier S, Seddon JA, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, Malherbe ST, Zak DE, Thompson E, Duffy FJ, Kaufmann SHE, Ottenhoff THM, Scriba TJ, Suliman S, Sutherland JS, Winter J, Kuivaniemi H, Walzl G, Tromp G, GC6-74 Consortium and Catalysis TB Biomarkers Consortium. Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis.. [DOI: 10.1101/2022.06.10.495597] [Reference Citation Analysis]
11 Nwongbouwoh Muefong C, Owolabi O, Donkor S, Charalambous S, Bakuli A, Rachow A, Geldmacher C, Sutherland JS. Neutrophils Contribute to Severity of Tuberculosis Pathology and Recovery From Lung Damage Pre- and Posttreatment. Clin Infect Dis 2022;74:1757-66. [PMID: 34427644 DOI: 10.1093/cid/ciab729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 Alisjahbana B, Sulastri N, Livia R, Apriani L, Verrall AJ, Sahiratmadja E. Neutrophils and lymphocytes in relation to MMP-8 and MMP-9 levels in pulmonary tuberculosis and HIV co-infection. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 2022;27:100308. [DOI: 10.1016/j.jctube.2022.100308] [Reference Citation Analysis]
13 Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022;13:840225. [PMID: 35359957 DOI: 10.3389/fimmu.2022.840225] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Bohrer AC, Castro E, Tocheny CE, Assmann M, Schwarz B, Bohrnsen E, Makiya MA, Legrand F, Hilligan KL, Baker PJ, Torres-juarez F, Hu Z, Ma H, Wang L, Niu L, Zilu W, Lee SH, Kamenyeva O, Kauffman KD, Donato M, Sher A, Barber DL, Via LE, Scriba TJ, Khatri P, Song Y, Wong K, Bosio CM, Klion AD, Mayer-barber KD, Tuberculosis Imaging Program. Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection.. [DOI: 10.1101/2022.02.18.480919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Parthasarathy U, Kuang Y, Thakur G, Hogan J, Wyche T, Norton J, Killough J, Sana T, Beakes C, Shyong B, Zhang N, Gutierrez D, Filbin M, Christiani D, Therien AG, Woelk C, White C, Martinelli R. Novel neutrophil subsets associated with sepsis, vascular dysfunction and metabolic alterations identified using systems immunology.. [DOI: 10.1101/2022.02.01.478658] [Reference Citation Analysis]
16 Santos AP, Ribeiro-Alves M, Corrêa R, Lopes I, Silva MA, Mafort TT, Leung J, Rodrigues LS, Rufino R. Hyporexia and cellular/biochemical characteristics of pleural fluid as predictive variables on a model for pleural tuberculosis diagnosis. J Bras Pneumol 2021;48:e20210245. [PMID: 34909921 DOI: 10.36416/1806-3756/e20210245] [Reference Citation Analysis]
17 Korotetskaya M, Baikuzina P, Segura-Cerda CA, Aceves-Sánchez MJ, Apt A, Flores-Valdez MA. BCG and BCGΔBCG1419c transiently protect hypersusceptible I/St mice and induce different influx of macrophages and neutrophils during pulmonary tuberculosis. J Med Microbiol 2022;71. [PMID: 35037613 DOI: 10.1099/jmm.0.001485] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Palmer MV, Kanipe C, Boggiatto PM. The Bovine Tuberculoid Granuloma. Pathogens 2022;11:61. [PMID: 35056009 DOI: 10.3390/pathogens11010061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Meier S, Seddon JA, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, Malherbe ST, Zak DE, Thompson E, Duffy FJ, Kaufmann SHE, Ottenhoff THM, Scriba TJ, Suliman S, Sutherland JS, Winter J, Kuivaniemi H, Walzl G, Tromp G; GC6-74 Consortium, Catalysis TB Biomarkers Consortium. Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis. PLoS One 2022;17:e0278295. [PMID: 36454773 DOI: 10.1371/journal.pone.0278295] [Reference Citation Analysis]
20 More S, Marakalala MJ, Sathekge M. Tuberculosis: Role of Nuclear Medicine and Molecular Imaging With Potential Impact of Neutrophil-Specific Tracers. Front Med 2021;8:758636. [DOI: 10.3389/fmed.2021.758636] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021;12:740117. [PMID: 34759923 DOI: 10.3389/fimmu.2021.740117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 J NH, K LP, Selvaraj A, Chinnaraj S, Luke Elizabeth H. Toll like receptor (2 and 4) expression and cytokine release by human neutrophils during tuberculosis treatment-A longitudinal study. Mol Immunol 2021;140:136-43. [PMID: 34710721 DOI: 10.1016/j.molimm.2021.10.009] [Reference Citation Analysis]
23 Hult C, Mattila JT, Gideon HP, Linderman JJ, Kirschner DE. Neutrophil Dynamics Affect Mycobacterium tuberculosis Granuloma Outcomes and Dissemination. Front Immunol 2021;12:712457. [PMID: 34675916 DOI: 10.3389/fimmu.2021.712457] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021;478:3157-78. [PMID: 34492096 DOI: 10.1042/BCJ20210263] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
25 Linge IA, Apt AS. A controversial role of neutrophils in tuberculosis infection pathogenesis. Russian Journal of Infection and Immunity 2021;11:809-819. [DOI: 10.15789/2220-7619-acr-1670] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. Microbiology (Reading) 2021;167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Stutz MD, Allison CC, Ojaimi S, Preston SP, Doerflinger M, Arandjelovic P, Whitehead L, Bader SM, Batey D, Asselin-labat M, Herold MJ, Strasser A, West NP, Pellegrini M. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 2021;54:1758-1771.e7. [DOI: 10.1016/j.immuni.2021.06.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
28 Piergallini TJ, Scordo JM, Pino PA, Schlesinger LS, Torrelles JB, Turner J. Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiol Spectr 2021;9:e0001621. [PMID: 34232086 DOI: 10.1128/Spectrum.00016-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Carvalho ACC, Amorim G, Melo MGM, Silveira AKA, Vargas PHL, Moreira ASR, Rocha MS, Souza AB, Arriaga MB, Araújo-Pereira M, Figueiredo MC, Durovni B, Lapa-E-Silva JR, Cavalcante S, Rolla VC, Sterling TR, Cordeiro-Santos M, Andrade BB, Silva EC, Kritski AL; RePORT Brazil consortium. Pre-Treatment Neutrophil Count as a Predictor of Antituberculosis Therapy Outcomes: A Multicenter Prospective Cohort Study. Front Immunol 2021;12:661934. [PMID: 34276654 DOI: 10.3389/fimmu.2021.661934] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Pellegrini JM, Martin C, Morelli MP, Schander JA, Tateosian NL, Amiano NO, Rolandelli A, Palmero DJ, Levi A, Ciallella L, Colombo MI, García VE. PGE2 displays immunosuppressive effects during human active tuberculosis. Sci Rep 2021;11:13559. [PMID: 34193890 DOI: 10.1038/s41598-021-92667-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Crowther RR, Qualls JE. Metabolic Regulation of Immune Responses to Mycobacterium tuberculosis: A Spotlight on L-Arginine and L-Tryptophan Metabolism. Front Immunol 2020;11:628432. [PMID: 33633745 DOI: 10.3389/fimmu.2020.628432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
32 Piergallini TJ, Scordo JM, Pino PA, Torrelles JB, Turner J. Acute inflammation, mediated by lung neutrophils, confers enhanced protection against Mycobacterium tuberculosis infection in mice.. [DOI: 10.1101/2021.01.12.426433] [Reference Citation Analysis]
33 Abebe F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: the role of natural killer cells. Clin Exp Immunol 2021;204:32-40. [PMID: 33315236 DOI: 10.1111/cei.13565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol 2021;14:229-41. [PMID: 32483198 DOI: 10.1038/s41385-020-0300-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
35 Muefong CN, Owolabi O, Donkor S, Charalambous S, Mendy J, Sey ICM, Bakuli A, Rachow A, Geldmacher C, Sutherland JS. Major Neutrophil-Derived Soluble Mediators Associate With Baseline Lung Pathology and Post-Treatment Recovery in Tuberculosis Patients. Front Immunol 2021;12:740933. [PMID: 34887853 DOI: 10.3389/fimmu.2021.740933] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Pellegrini JM, Sabbione F, Morelli MP, Tateosian NL, Castello FA, Amiano NO, Palmero D, Levi A, Ciallella L, Colombo MI, Trevani AS, García VE. Neutrophil autophagy during human active tuberculosis is modulated by SLAMF1. Autophagy 2020;:1-10. [PMID: 32954947 DOI: 10.1080/15548627.2020.1825273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S, Rangel-Moreno J, Lu L, Mehra S, Mbandi SK, Thackray LB, Diamond MS, Murphy KM, Means T, Martin J, Kaushal D, Scriba TJ, Mitreva M, Khader SA. Immune correlates of tuberculosis disease and risk translate across species. Sci Transl Med 2020;12:eaay0233. [PMID: 31996462 DOI: 10.1126/scitranslmed.aay0233] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
38 Ndlovu LN, Peetluk L, Moodley S, Nhamoyebonde S, Ngoepe AT, Mazibuko M, Khan K, Karim F, Pym AS, Maruri F, Moosa MS, van der Heijden YF, Sterling TR, Leslie A. Increased Neutrophil Count and Decreased Neutrophil CD15 Expression Correlate With TB Disease Severity and Treatment Response Irrespective of HIV Co-infection. Front Immunol 2020;11:1872. [PMID: 32983107 DOI: 10.3389/fimmu.2020.01872] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
39 Jain N, Kalam H, Singh L, Sharma V, Kedia S, Das P, Ahuja V, Kumar D. Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis. Nat Commun. 2020;11:3062. [PMID: 32546788 DOI: 10.1038/s41467-020-16877-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
40 Mudalagiriyappa S, Sharma J, Abdelaal HFM, Kelly TC, Choi W, Vieson MD, Talaat AM, Nanjappa SG. Decoding the role of CBLB for innate immune responses regulating systemic dissemination during Non-Tuberculous Mycobacteria infection.. [DOI: 10.1101/2020.05.28.117663] [Reference Citation Analysis]
41 Di Federico M, Ancora M, Luciani M, Krasteva I, Sacchini F, Orsini G, Di Febo T, Di Lollo V, Mattioli M, Scacchia M, Marruchella G, Cammà C. Pro-Inflammatory Response of Bovine Polymorphonuclear Cells Induced by Mycoplasma mycoides subsp. mycoides. Front Vet Sci 2020;7:142. [PMID: 32292794 DOI: 10.3389/fvets.2020.00142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020;250:636-46. [PMID: 32108337 DOI: 10.1002/path.5407] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
43 Rout P, Modipalle V, Hedge SS, Patel N, Uppala S, Shetty PK. Prevalence of oral lesions in tuberculosis: A cross sectional study. J Family Med Prim Care 2019;8:3821-5. [PMID: 31879619 DOI: 10.4103/jfmpc.jfmpc_714_19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
44 Hilda JN, Das S, Tripathy SP, Hanna LE. Role of neutrophils in tuberculosis: A bird's eye view. Innate Immun 2020;26:240-7. [PMID: 31735099 DOI: 10.1177/1753425919881176] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
45 Gideon HP, Phuah J, Junecko BA, Mattila JT. Neutrophils express pro- and anti-inflammatory cytokines in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Mucosal Immunol 2019;12:1370-81. [PMID: 31434990 DOI: 10.1038/s41385-019-0195-8] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 12.3] [Reference Citation Analysis]
46 Kumar R, Singh P, Kolloli A, Shi L, Bushkin Y, Tyagi S, Subbian S. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019;6:105. [PMID: 31681793 DOI: 10.3389/fmolb.2019.00105] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
47 Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018;285:147-67. [PMID: 30129209 DOI: 10.1111/imr.12671] [Cited by in Crossref: 115] [Cited by in F6Publishing: 119] [Article Influence: 28.8] [Reference Citation Analysis]
48 Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019;10:972. [PMID: 31134070 DOI: 10.3389/fimmu.2019.00972] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
49 Remot A, Doz E, Winter N. Neutrophils and Close Relatives in the Hypoxic Environment of the Tuberculous Granuloma: New Avenues for Host-Directed Therapies? Front Immunol 2019;10:417. [PMID: 30915076 DOI: 10.3389/fimmu.2019.00417] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
50 Laghari M, Sulaiman SAS, Khan AH, Memon N. A prospective study of socio-demographic, clinical characteristics and treatment outcomes of children with tuberculosis in Sindh, Pakistan. BMC Infect Dis 2019;19:82. [PMID: 30678656 DOI: 10.1186/s12879-019-3702-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
51 Jain N, Kalam H, Singh L, Sharma V, Kedia S, Das P, Ahuja V, Kumar D. Mesenchymal stem cells (MSCs) offer a drug tolerant and immune- privileged niche to Mycobacterium tuberculosis.. [DOI: 10.1101/521609] [Reference Citation Analysis]
52 de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS, Dutra TCP, Galliez RM, Kritski AL, Silva EC; Rede-TB Study Group. Imbalance of NET and Alpha-1-Antitrypsin in Tuberculosis Patients Is Related With Hyper Inflammation and Severe Lung Tissue Damage. Front Immunol 2018;9:3147. [PMID: 30687336 DOI: 10.3389/fimmu.2018.03147] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
53 Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, Wilkinson RJ, Hoal EG, Schurr E. Neutrophils: Innate Effectors of TB Resistance? Front Immunol 2018;9:2637. [PMID: 30487797 DOI: 10.3389/fimmu.2018.02637] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
54 Olive AJ, Sassetti CM. Tolerating the Unwelcome Guest; How the Host Withstands Persistent Mycobacterium tuberculosis. Front Immunol 2018;9:2094. [PMID: 30258448 DOI: 10.3389/fimmu.2018.02094] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
55 Cavalcanti-Neto MP, Prado RQ, Piñeros AR, Sérgio CA, Bertolini TB, Gembre AF, Ramos SG, Bonato VL. Improvement of the resistance against early Mycobacterium tuberculosis-infection in the absence of PI3Kγ enzyme is associated with increase of CD4+IL-17+ cells and neutrophils. Tuberculosis (Edinb) 2018;113:1-9. [PMID: 30514491 DOI: 10.1016/j.tube.2018.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
56 Leisching GR. Susceptibility to Tuberculosis Is Associated With PI3K-Dependent Increased Mobilization of Neutrophils. Front Immunol 2018;9:1669. [PMID: 30065729 DOI: 10.3389/fimmu.2018.01669] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
57 Moideen K, Kumar NP, Nair D, Banurekha VV, Bethunaickan R, Babu S. Heightened Systemic Levels of Neutrophil and Eosinophil Granular Proteins in Pulmonary Tuberculosis and Reversal following Treatment. Infect Immun 2018;86:e00008-18. [PMID: 29632246 DOI: 10.1128/IAI.00008-18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
58 Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA, Gorelova LA, Radaeva TV, Kiseleva YY, Bozhenko VK, Lyadova IV. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3+CCR6+ Cells in the Blood and Highly Differentiated CXCR3+/-CCR6- Cells in the Lungs. J Immunol 2018;200:2090-103. [PMID: 29440351 DOI: 10.4049/jimmunol.1701424] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
59 Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Randall KT, Selseth AN, Rundstrom P, Herlache L, Lewis MS, Park H, Planer SL, Turner JM, Fischer M, Armstrong C, Zweig RC, Valvo J, Braun JM, Shankar S, Lu L, Sylwester AW, Legasse AW, Messerle M, Jarvis MA, Amon LM, Aderem A, Alter G, Laddy DJ, Stone M, Bonavia A, Evans TG, Axthelm MK, Früh K, Edlefsen PT, Picker LJ. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 2018;24:130-43. [PMID: 29334373 DOI: 10.1038/nm.4473] [Cited by in Crossref: 154] [Cited by in F6Publishing: 160] [Article Influence: 30.8] [Reference Citation Analysis]
60 Ju WT, Fu Y, Liu Y, Tan YR, Dong MJ, Wang LZ, Li J, Zhong LP. Clinical and pathologic analyses of tuberculosis in the oral cavity: report of 11 cases. Oral Surg Oral Med Oral Pathol Oral Radiol 2018;125:44-51. [PMID: 29122502 DOI: 10.1016/j.oooo.2017.09.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
61 Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB, Sadikov PV, Serdyuk YV, Larionova EE, Bagdasarian TR, Chernousova LN, Ganusov VV, Lyadova IV. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD4 T-Cell Response. Front Immunol 2017;8:963. [PMID: 28871253 DOI: 10.3389/fimmu.2017.00963] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]