BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tombácz D, Prazsák I, Szucs A, Dénes B, Snyder M, Boldogkoi Z. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience 2018;7. [PMID: 30476066 DOI: 10.1093/gigascience/giy139] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022;14:1289. [PMID: 35746760 DOI: 10.3390/v14061289] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Rhodes J. Microbial Genetics in Mycology. Encyclopedia of Infection and Immunity 2022. [DOI: 10.1016/b978-0-12-818731-9.00189-0] [Reference Citation Analysis]
3 Saud Z, Hitchings MD, Butt TM. Nanopore sequencing and de novo assembly of a misidentified Camelpox vaccine reveals putative epigenetic modifications and alternate protein signal peptides. Sci Rep 2021;11:17758. [PMID: 34493784 DOI: 10.1038/s41598-021-97158-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Tombácz D, Prazsák I, Torma G, Csabai Z, Balázs Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. Time-Course Transcriptome Profiling of a Poxvirus Using Long-Read Full-Length Assay. Pathogens 2021;10:919. [PMID: 34451383 DOI: 10.3390/pathogens10080919] [Reference Citation Analysis]
5 Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome. Sci Rep 2021;11:14487. [PMID: 34262076 DOI: 10.1038/s41598-021-93593-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
6 Maróti Z, Tombácz D, Moldován N, Torma G, Jefferson VA, Csabai Z, Gulyás G, Dörmő Á, Boldogkői M, Kalmár T, Meyer F, Boldogkői Z. Time course profiling of host cell response to herpesvirus infection using nanopore and synthetic long-read transcriptome sequencing. Sci Rep 2021;11:14219. [PMID: 34244540 DOI: 10.1038/s41598-021-93142-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
7 Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 2021;14:239. [PMID: 34167576 DOI: 10.1186/s13104-021-05657-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Brancaccio RN, Robitaille A, Dutta S, Rollison DE, Tommasino M, Gheit T. MinION nanopore sequencing and assembly of a complete human papillomavirus genome. J Virol Methods 2021;294:114180. [PMID: 33965458 DOI: 10.1016/j.jviromet.2021.114180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Tombácz D, Moldován N, Torma G, Nagy T, Hornyák Á, Csabai Z, Gulyás G, Boldogkői M, Jefferson VA, Zádori Z, Meyer F, Boldogkői Z. Dynamic Transcriptome Sequencing of Bovine Alphaherpesvirus Type 1 and Host Cells Carried Out by a Multi-Technique Approach. Front Genet 2021;12:619056. [PMID: 33897757 DOI: 10.3389/fgene.2021.619056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021;13:579. [PMID: 33808073 DOI: 10.3390/v13040579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined Nanopore and Single-Molecule Real-Time Sequencing Survey of Human Betaherpesvirus 5 Transcriptome.. [DOI: 10.1101/2021.03.30.437686] [Reference Citation Analysis]
12 Moldován N, Torma G, Gulyás G, Hornyák Á, Zádori Z, Jefferson VA, Csabai Z, Boldogkői M, Tombácz D, Meyer F, Boldogkői Z. Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 2020;10:20496. [PMID: 33235226 DOI: 10.1038/s41598-020-77520-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Nguyen Quang N, Goudey S, Ségéral E, Mohammad A, Lemoine S, Blugeon C, Versapuech M, Paillart JC, Berlioz-Torrent C, Emiliani S, Gallois-Montbrun S. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection. Retrovirology 2020;17:25. [PMID: 32807178 DOI: 10.1186/s12977-020-00533-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
14 Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined short and long-read sequencing reveals a complex transcriptomic architecture of African swine fever virus.. [DOI: 10.1101/2020.07.18.202820] [Reference Citation Analysis]
15 Tombácz D, Torma G, Gulyás G, Moldován N, Snyder M, Boldogkői Z. Meta-analytic approach for transcriptome profiling of herpes simplex virus type 1. Sci Data 2020;7:223. [PMID: 32647284 DOI: 10.1038/s41597-020-0558-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
16 Moldován N, Maróti Z, Torma G, Gulyás G, Hornyák Á, Zádori Z, Jefferson VA, Csabai Z, Boldogkői M, Kalmár T, Tombácz D, Meyer F, Boldogkői Z. Time-course Profiling of Bovine Herpesvirus Type 1 and Host Cell Transcriptomes using Multiplatform Sequencing.. [DOI: 10.1101/2020.05.25.114843] [Reference Citation Analysis]
17 Furlan M, Tanaka I, Leonardi T, de Pretis S, Pelizzola M. Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Front Genet 2020;11:394. [PMID: 32425981 DOI: 10.3389/fgene.2020.00394] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
18 Depledge DP, Wilson AC. Using Direct RNA Nanopore Sequencing to Deconvolute Viral Transcriptomes. Curr Protoc Microbiol 2020;57:e99. [PMID: 32255550 DOI: 10.1002/cpmc.99] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Tombácz D, Torma G, Gulyás G, Moldován N, Snyder M, Boldogkői Z. Demand for Multiplatform and Meta-analytic Approaches in Transcriptome Profiling.. [DOI: 10.1101/860312] [Reference Citation Analysis]
20 Tombácz D, Moldován N, Balázs Z, Gulyás G, Csabai Z, Boldogkői M, Snyder M, Boldogkői Z. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome. Front Genet 2019;10:834. [PMID: 31608102 DOI: 10.3389/fgene.2019.00834] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
21 Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long-Read Sequencing – A Powerful Tool in Viral Transcriptome Research. Trends in Microbiology 2019;27:578-92. [DOI: 10.1016/j.tim.2019.01.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 11.3] [Reference Citation Analysis]
22 Shabardina V, Kischka T, Manske F, Grundmann N, Frith MC, Suzuki Y, Makałowski W. NanoPipe-a web server for nanopore MinION sequencing data analysis. Gigascience 2019;8:giy169. [PMID: 30689855 DOI: 10.1093/gigascience/giy169] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
23 Tombácz D, Balázs Z, Gulyás G, Csabai Z, Boldogkoi M, Snyder M, Boldogkoi Z. Multiple Long-read Sequencing Survey of Herpes Simplex Virus Lytic Transcriptome.. [DOI: 10.1101/605956] [Reference Citation Analysis]
24 Shim H. Futuristic Methods in Virus Genome Evolution Using the Third-Generation DNA Sequencing and Artificial Neural Networks. Global Virology III: Virology in the 21st Century 2019. [DOI: 10.1007/978-3-030-29022-1_17] [Reference Citation Analysis]
25 Tombácz D, Prazsák I, Szucs A, Dénes B, Snyder M, Boldogkoi Z. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience 2018;7. [PMID: 30476066 DOI: 10.1093/gigascience/giy139] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]