BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ding Q, Gaska JM, Douam F, Wei L, Kim D, Balev M, Heller B, Ploss A. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci U S A 2018;115:E6310-8. [PMID: 29915078 DOI: 10.1073/pnas.1803406115] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
Number Citing Articles
1 Ferraris P, Yssel H, Missé D. Zika virus infection: an update. Microbes and Infection 2019;21:353-60. [DOI: 10.1016/j.micinf.2019.04.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
2 Xu S, Ci Y, Wang L, Yang Y, Zhang L, Xu C, Qin C, Shi L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res 2019;47:8693-707. [PMID: 31361901 DOI: 10.1093/nar/gkz650] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
3 Kai Y, Lilan X, Yaoming L. Monoclonal Antibody That Inhibits Cleavage Activity of Japanese Encephalitis Virus NS3. Monoclon Antib Immunodiagn Immunother 2021;40:28-32. [PMID: 33625288 DOI: 10.1089/mab.2020.0038] [Reference Citation Analysis]
4 Wang Y, Ren K, Li S, Yang C, Chen L. Interferon stimulated gene 15 promotes Zika virus replication through regulating Jak/STAT and ISGylation pathways. Virus Res 2020;287:198087. [PMID: 32738280 DOI: 10.1016/j.virusres.2020.198087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li F, Wang N, Zheng Y, Luo Y, Zhang Y. cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders. Aging Dis 2021;12:1658-74. [PMID: 34631213 DOI: 10.14336/AD.2021.0304] [Reference Citation Analysis]
6 Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021;14:44. [PMID: 35062249 DOI: 10.3390/v14010044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021;13:369. [PMID: 33652634 DOI: 10.3390/v13030369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 Huang C, Wang X, Huang S, Ou L, Dai J, Wang K. Evasion strategies of Zika virus antagonizing host innate immunity. Future Virology 2019;14:465-71. [DOI: 10.2217/fvl-2019-0037] [Reference Citation Analysis]
9 Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022;13:829433. [DOI: 10.3389/fimmu.2022.829433] [Reference Citation Analysis]
10 Amalfi S, Molina GN, Bevacqua RJ, López MG, Taboga O, Alfonso V. Baculovirus Transduction in Mammalian Cells Is Affected by the Production of Type I and III Interferons, Which Is Mediated Mainly by the cGAS-STING Pathway. J Virol 2020;94:e01555-20. [PMID: 32796076 DOI: 10.1128/JVI.01555-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Konan KV, Ogbamikael SA, Yager E, Yamaji T, Cerone J, Monaco-brown M, Barroso M, Hanada K. Modulation of Zika virus replication via glycosphingolipids. Virology 2022. [DOI: 10.1016/j.virol.2022.03.014] [Reference Citation Analysis]
12 Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 2019;63:51-64. [PMID: 30677166 DOI: 10.1111/1348-0421.12669] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
13 Pierson TC, Diamond MS. The emergence of Zika virus and its new clinical syndromes. Nature 2018;560:573-81. [PMID: 30158602 DOI: 10.1038/s41586-018-0446-y] [Cited by in Crossref: 156] [Cited by in F6Publishing: 143] [Article Influence: 39.0] [Reference Citation Analysis]
14 Guo M, Hui L, Nie Y, Tefsen B, Wu Y. ZIKV viral proteins and their roles in virus-host interactions. Sci China Life Sci 2021;64:709-19. [PMID: 33068285 DOI: 10.1007/s11427-020-1818-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Front Cell Neurosci 2021;15:670298. [PMID: 34211370 DOI: 10.3389/fncel.2021.670298] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Xie S, Liang Z, Yang X, Pan J, Yu D, Li T, Cao R. Japanese Encephalitis Virus NS2B-3 Protein Complex Promotes Cell Apoptosis and Viral Particle Release by Down-Regulating the Expression of AXL. Virol Sin 2021. [PMID: 34487337 DOI: 10.1007/s12250-021-00442-3] [Reference Citation Analysis]
17 Fanunza E, Carletti F, Quartu M, Grandi N, Ermellino L, Milia J, Corona A, Capobianchi MR, Ippolito G, Tramontano E. Zika virus NS2A inhibits interferon signaling by degradation of STAT1 and STAT2. Virulence 2021;12:1580-96. [PMID: 34338586 DOI: 10.1080/21505594.2021.1935613] [Reference Citation Analysis]
18 Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M Jr, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2020;33:22-37. [PMID: 31687902 DOI: 10.1089/vim.2019.0082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Berry N, Ferguson D, Ham C, Hall J, Jenkins A, Giles E, Devshi D, Kempster S, Rose N, Dowall S, Fritzsche M, Bleazard T, Hewson R, Almond N. High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Sci Rep 2019;9. [DOI: 10.1038/s41598-019-50918-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
20 Unterholzner L, Almine JF. Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology 2019;156:217-27. [PMID: 30499584 DOI: 10.1111/imm.13030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
21 Chen Y, Shi Y, Wu J, Qi N. MAVS: A Two-Sided CARD Mediating Antiviral Innate Immune Signaling and Regulating Immune Homeostasis. Front Microbiol 2021;12:744348. [PMID: 34566944 DOI: 10.3389/fmicb.2021.744348] [Reference Citation Analysis]
22 Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022;:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Reference Citation Analysis]
23 Elrefaey AME, Hollinghurst P, Reitmayer CM, Alphey L, Maringer K. Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses 2021;13:2116. [PMID: 34834923 DOI: 10.3390/v13112116] [Reference Citation Analysis]
24 Hu Y, Dong X, He Z, Wu Y, Zhang S, Lin J, Yang Y, Chen J, An S, Yin Y, Shen Z, Zeng G, Tian H, Cai J, Yang Y, Guan H, Wu J, Li M, Zhu X. Zika virus antagonizes interferon response in patients and disrupts RIG-I-MAVS interaction through its CARD-TM domains. Cell Biosci 2019;9:46. [PMID: 31183075 DOI: 10.1186/s13578-019-0308-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
25 Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020;10:576263. [PMID: 33042875 DOI: 10.3389/fcimb.2020.576263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019;11:E961. [PMID: 31635238 DOI: 10.3390/v11100961] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 29.0] [Reference Citation Analysis]
27 Webb LG, Fernandez-Sesma A. RNA viruses and the cGAS-STING pathway: reframing our understanding of innate immune sensing. Curr Opin Virol 2022;53:101206. [PMID: 35180533 DOI: 10.1016/j.coviro.2022.101206] [Reference Citation Analysis]
28 Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021;21:65. [PMID: 33902453 DOI: 10.1186/s12862-021-01783-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu Y, Hu G, Wang Y, Ren W, Zhao X, Ji F, Zhu Y, Feng F, Gong M, Ju X, Zhu Y, Cai X, Lan J, Guo J, Xie M, Dong L, Zhu Z, Na J, Wu J, Lan X, Xie Y, Wang X, Yuan Z, Zhang R, Ding Q. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A 2021;118:e2025373118. [PMID: 33658332 DOI: 10.1073/pnas.2025373118] [Cited by in Crossref: 21] [Cited by in F6Publishing: 31] [Article Influence: 21.0] [Reference Citation Analysis]
30 Carbaugh DL, Zhou S, Sanders W, Moorman NJ, Swanstrom R, Lazear HM. Two Genetic Differences between Closely Related Zika Virus Strains Determine Pathogenic Outcome in Mice. J Virol 2020;94:e00618-20. [PMID: 32796074 DOI: 10.1128/JVI.00618-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
31 Estévez-Herrera J, Pérez-Yanes S, Cabrera-Rodríguez R, Márquez-Arce D, Trujillo-González R, Machado JD, Madrid R, Valenzuela-Fernández A. Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021;9:294. [PMID: 33810028 DOI: 10.3390/vaccines9030294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Dutta S, Das N, Mukherjee P. Picking up a Fight: Fine Tuning Mitochondrial Innate Immune Defenses Against RNA Viruses. Front Microbiol 2020;11:1990. [PMID: 32983015 DOI: 10.3389/fmicb.2020.01990] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
33 Jiang GL, Yang XL, Zhou HJ, Long J, Liu B, Zhang LM, Lu D. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Brain Res Bull 2021;171:183-95. [PMID: 33745949 DOI: 10.1016/j.brainresbull.2021.03.010] [Reference Citation Analysis]
34 Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021;24:102385. [PMID: 33997675 DOI: 10.1016/j.isci.2021.102385] [Reference Citation Analysis]
35 Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2021;:167374. [PMID: 34863779 DOI: 10.1016/j.jmb.2021.167374] [Reference Citation Analysis]
36 Gim E, Shim DW, Hwang I, Shin OS, Yu JW. Zika Virus Impairs Host NLRP3-mediated Inflammasome Activation in an NS3-dependent Manner. Immune Netw 2019;19:e40. [PMID: 31921470 DOI: 10.4110/in.2019.19.e40] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
37 Xie X, Zeng J. Neuroimmune Evasion of Zika Virus to Facilitate Viral Pathogenesis. Front Cell Infect Microbiol 2021;11:662447. [PMID: 34765564 DOI: 10.3389/fcimb.2021.662447] [Reference Citation Analysis]
38 Berthoux L. The Restrictome of Flaviviruses. Virol Sin 2020;35:363-77. [PMID: 32152893 DOI: 10.1007/s12250-020-00208-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
39 Xu H, Cheng M, Chi X, Liu X, Zhou J, Lin T, Yang W. High-Throughput Screening Identifies Mixed-Lineage Kinase 3 as a Key Host Regulatory Factor in Zika Virus Infection. J Virol 2019;93:e00758-19. [PMID: 31270223 DOI: 10.1128/JVI.00758-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
40 Reynolds ND, Aceves NM, Liu JL, Compton JR, Leary DH, Freitas BT, Pegan SD, Doctor KZ, Wu FY, Hu X, Legler PM. The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease. ACS Infect Dis 2021;7:1483-502. [PMID: 34019767 DOI: 10.1021/acsinfecdis.0c00866] [Reference Citation Analysis]
41 Morazzani EM, Compton JR, Leary DH, Berry AV, Hu X, Marugan JJ, Glass PJ, Legler PM. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019;164:106-22. [PMID: 30742841 DOI: 10.1016/j.antiviral.2019.02.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Serman TM, Gack MU. Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses 2019;11:E970. [PMID: 31652496 DOI: 10.3390/v11100970] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
43 Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019;4:914-24. [PMID: 30936491 DOI: 10.1038/s41564-019-0421-x] [Cited by in Crossref: 125] [Cited by in F6Publishing: 112] [Article Influence: 41.7] [Reference Citation Analysis]
44 Zhu T, Webb LG, Veloz J, Wilkins M, Aguirre S, Fernandez-Sesma A. Generation and Characterization of Human-Mouse STING Chimeras That Allow DENV Replication in Mouse Cells. mSphere 2022;:e0091421. [PMID: 35477320 DOI: 10.1128/msphere.00914-21] [Reference Citation Analysis]
45 Branche E, Simon AY, Sheets N, Kim K, Barker D, Nguyen AT, Sahota H, Young MP, Salgado R, Mamidi A, Viramontes KM, Carnelley T, Qiu H, Elong Ngono A, Regla-Nava JA, Susantono MX, Valls Cuevas JM, Kennedy K, Kodihalli S, Shresta S. Human Polyclonal Antibodies Prevent Lethal Zika Virus Infection in Mice. Sci Rep 2019;9:9857. [PMID: 31285451 DOI: 10.1038/s41598-019-46291-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
46 Liao X, Xie H, Li S, Ye H, Li S, Ren K, Li Y, Xu M, Lin W, Duan X, Yang C, Chen L. 2', 5'-Oligoadenylate Synthetase 2 (OAS2) Inhibits Zika Virus Replication through Activation of Type Ι IFN Signaling Pathway. Viruses 2020;12:E418. [PMID: 32276512 DOI: 10.3390/v12040418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
47 Verrier ER, Langevin C. Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Front Immunol 2021;12:637399. [PMID: 33708225 DOI: 10.3389/fimmu.2021.637399] [Reference Citation Analysis]
48 Fan YC, Liang JJ, Chen JM, Lin JW, Chen YY, Su KH, Lin CC, Tu WC, Chiou MT, Ou SC, Chang GJ, Lin YL, Chiou SS. NS2B/NS3 mutations enhance the infectivity of genotype I Japanese encephalitis virus in amplifying hosts. PLoS Pathog 2019;15:e1007992. [PMID: 31381617 DOI: 10.1371/journal.ppat.1007992] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
49 Zhu T, Fernandez-Sesma A. Innate Immune DNA Sensing of Flaviviruses. Viruses 2020;12:E979. [PMID: 32899347 DOI: 10.3390/v12090979] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021;12:2814-38. [PMID: 34696709 DOI: 10.1080/21505594.2021.1996059] [Reference Citation Analysis]
51 Li A, Wang W, Wang Y, Chen K, Xiao F, Hu D, Hui L, Liu W, Feng Y, Li G, Tan Q, Liu Y, Wu K, Wu J. NS5 Conservative Site Is Required for Zika Virus to Restrict the RIG-I Signaling. Front Immunol 2020;11:51. [PMID: 32117232 DOI: 10.3389/fimmu.2020.00051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
52 Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021;12:769543. [PMID: 34790204 DOI: 10.3389/fimmu.2021.769543] [Reference Citation Analysis]
53 Wen J, Wang YT, Valentine KM, Dos Santos Alves RP, Xu Z, Regla-Nava JA, Ngono AE, Young MP, Ferreira LCS, Shresta S. CD4+ T Cells Cross-Reactive with Dengue and Zika Viruses Protect against Zika Virus Infection. Cell Rep 2020;31:107566. [PMID: 32348763 DOI: 10.1016/j.celrep.2020.107566] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
54 Lin S, Yang S, He J, Guest JD, Ma Z, Yang L, Pierce BG, Tang Q, Zhang YJ. Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation. Virology 2019;527:180-7. [PMID: 30530224 DOI: 10.1016/j.virol.2018.11.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
55 Chin CV, Saeed M. Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022;11:522. [DOI: 10.3390/pathogens11050522] [Reference Citation Analysis]
56 Kleinert RDV, Montoya-Diaz E, Khera T, Welsch K, Tegtmeyer B, Hoehl S, Ciesek S, Brown RJP. Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019;11:E960. [PMID: 31627415 DOI: 10.3390/v11100960] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
57 Li C, Di D, Huang H, Wang X, Xia Q, Ma X, Liu K, Li B, Shao D, Qiu Y, Li Z, Wei J, Ma Z. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon α/β induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype I over genotype III in ducklings. PLoS Pathog 2020;16:e1008773. [PMID: 32881988 DOI: 10.1371/journal.ppat.1008773] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
58 Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, Chan YK, Diamond MS, Gack MU. Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host Microbe 2019;26:493-503.e6. [PMID: 31600501 DOI: 10.1016/j.chom.2019.09.012] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 20.0] [Reference Citation Analysis]
59 Li H, Saucedo-Cuevas L, Yuan L, Ross D, Johansen A, Sands D, Stanley V, Guemez-Gamboa A, Gregor A, Evans T, Chen S, Tan L, Molina H, Sheets N, Shiryaev SA, Terskikh AV, Gladfelter AS, Shresta S, Xu Z, Gleeson JG. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron 2019;101:1089-1098.e4. [PMID: 30713029 DOI: 10.1016/j.neuron.2019.01.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
60 Hay-McCullough E, Morrison J. Contributions of Ubiquitin and Ubiquitination to Flaviviral Antagonism of Type I IFN. Viruses 2021;13:763. [PMID: 33925296 DOI: 10.3390/v13050763] [Reference Citation Analysis]
61 Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019;50:907-23. [PMID: 30995506 DOI: 10.1016/j.immuni.2019.03.025] [Cited by in Crossref: 267] [Cited by in F6Publishing: 252] [Article Influence: 89.0] [Reference Citation Analysis]
62 Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Reviews in Medical Virology. [DOI: 10.1002/rmv.2343] [Reference Citation Analysis]
63 Wen W, Li X, Wang H, Zhao Q, Yin M, Liu W, Chen H, Qian P. Seneca Valley Virus 3C Protease Induces Pyroptosis by Directly Cleaving Porcine Gasdermin D. J Immunol 2021:ji2001030. [PMID: 34183365 DOI: 10.4049/jimmunol.2001030] [Reference Citation Analysis]
64 Eaglesham JB, Kranzusch PJ. Conserved strategies for pathogen evasion of cGAS-STING immunity. Curr Opin Immunol 2020;66:27-34. [PMID: 32339908 DOI: 10.1016/j.coi.2020.04.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
65 Chen W, Foo SS, Hong E, Wu C, Lee WS, Lee SA, Evseenko D, Moreira MEL, García-Sastre A, Cheng G, Nielsen-Saines K, Brasil P, Avvad-Portari E, Jung JU. Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nat Microbiol 2021;6:455-66. [PMID: 33510473 DOI: 10.1038/s41564-020-00850-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Coldbeck-Shackley RC, Eyre NS, Beard MR. The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines (Basel) 2020;8:E530. [PMID: 32937990 DOI: 10.3390/vaccines8030530] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
67 Chin AC. Neuroinflammation and the cGAS-STING pathway. J Neurophysiol 2019;121:1087-91. [PMID: 30673358 DOI: 10.1152/jn.00848.2018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
68 Suen WW, Imoda M, Thomas AW, Nasir NNBM, Tearnsing N, Wang W, Bielefeldt-Ohmann H. An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus. Pathogens 2019;8:E195. [PMID: 31635289 DOI: 10.3390/pathogens8040195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Dixon CR, Malik P, de Las Heras JI, Saiz-Ros N, de Lima Alves F, Tingey M, Gaunt E, Richardson AC, Kelly DA, Goldberg MW, Towers GJ, Yang W, Rappsilber J, Digard P, Schirmer EC. STING nuclear partners contribute to innate immune signaling responses. iScience 2021;24:103055. [PMID: 34541469 DOI: 10.1016/j.isci.2021.103055] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Cui X, Zhang R, Cen S, Zhou J. STING modulators: Predictive significance in drug discovery. Eur J Med Chem 2019;182:111591. [PMID: 31419779 DOI: 10.1016/j.ejmech.2019.111591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
71 [DOI: 10.1101/2020.04.22.046565] [Cited by in Crossref: 30] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
72 Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019;51:1-10. [PMID: 31827069 DOI: 10.1038/s12276-019-0333-0] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
73 Athukoralage JS, White MF. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA 2021:rna. [PMID: 33986148 DOI: 10.1261/rna.078739.121] [Reference Citation Analysis]
74 Baggiani M, Dell'Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020;9:E1893. [PMID: 32806773 DOI: 10.3390/cells9081893] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Wu Z, Zhang W, Wu Y, Wang T, Wu S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Merits A, Chen S, Cheng A. Binding of the Duck Tembusu Virus Protease to STING Is Mediated by NS2B and Is Crucial for STING Cleavage and for Impaired Induction of IFN-β. J Immunol 2019;203:3374-85. [PMID: 31704883 DOI: 10.4049/jimmunol.1900956] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
76 Rojas JM, Alejo A, Martín V, Sevilla N. Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2021;78:1423-44. [PMID: 33084946 DOI: 10.1007/s00018-020-03671-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
77 Landman SL, Ressing ME, van der Veen AG. Balancing STING in antimicrobial defense and autoinflammation. Cytokine Growth Factor Rev 2020;55:1-14. [PMID: 32563552 DOI: 10.1016/j.cytogfr.2020.06.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
78 Liu K, Lan Y, Li X, Li M, Cui L, Luo H, Luo L. Development of small molecule inhibitors/agonists targeting STING for disease. Biomed Pharmacother 2020;132:110945. [PMID: 33254439 DOI: 10.1016/j.biopha.2020.110945] [Reference Citation Analysis]
79 Wu Y, Yang X, Yao Z, Dong X, Zhang D, Hu Y, Zhang S, Lin J, Chen J, An S, Ye H, Zhang S, Qiu Z, He Z, Huang M, Wei G, Zhu X. C19orf66 interrupts Zika virus replication by inducing lysosomal degradation of viral NS3. PLoS Negl Trop Dis 2020;14:e0008083. [PMID: 32150556 DOI: 10.1371/journal.pntd.0008083] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
80 Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018;29:384-407. [PMID: 30167843 DOI: 10.1007/s00335-018-9775-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
81 Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R. Endoplasmic reticulum: a focal point of Zika virus infection. J Biomed Sci 2020;27:27. [PMID: 31959174 DOI: 10.1186/s12929-020-0618-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
82 Casazza RL, Lazear HM, Miner JJ. Protective and Pathogenic Effects of Interferon Signaling During Pregnancy. Viral Immunol 2020;33:3-11. [PMID: 31545139 DOI: 10.1089/vim.2019.0076] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
83 Mittal S, Federman HG, Sievert D, Gleeson JG. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist 2021;:10738584211009149. [PMID: 33874789 DOI: 10.1177/10738584211009149] [Reference Citation Analysis]
84 Jagger BW, Dowd KA, Chen RE, Desai P, Foreman B, Burgomaster KE, Himansu S, Kong WP, Graham BS, Pierson TC, Diamond MS. Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. J Infect Dis 2019;220:1577-88. [PMID: 31260518 DOI: 10.1093/infdis/jiz338] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
85 Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019;166:132-41. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]