BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Almassian DR, Cockrell LM, Nelson WM. Portable nucleic acid thermocyclers. Chem Soc Rev 2013;42:8769. [DOI: 10.1039/c3cs60144g] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H. Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection. ACS Biomater Sci Eng 2016;2:278-94. [PMID: 28503658 DOI: 10.1021/acsbiomaterials.5b00449] [Cited by in Crossref: 98] [Cited by in F6Publishing: 82] [Article Influence: 16.3] [Reference Citation Analysis]
2 Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2016;14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
3 Petralia S, Sciuto EL, Di Pietro ML, Zimbone M, Grimaldi MG, Conoci S. An innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst 2017;142:2090-3. [DOI: 10.1039/c7an00202e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
4 Mauk MG, Song J, Liu C, Bau HH. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests. Biosensors (Basel) 2018;8:E17. [PMID: 29495424 DOI: 10.3390/bios8010017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
5 Zhang S, Su X, Wang J, Chen M, Li C, Li T, Ge S, Xia N. Nucleic Acid Testing for Coronavirus Disease 2019: Demand, Research Progression, and Perspective. Crit Rev Anal Chem 2020;:1-12. [PMID: 32813575 DOI: 10.1080/10408347.2020.1805294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Lee SH, Song J, Cho B, Hong S, Hoxha O, Kang T, Kim D, Lee LP. Bubble-free rapid microfluidic PCR. Biosensors and Bioelectronics 2019;126:725-33. [DOI: 10.1016/j.bios.2018.10.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
7 Yamazaki Y, Thongchankaew-Seo U, Nagao K, Mekata H, Yamazaki W. Development and evaluation of a point-of-care test with a combination of EZ-Fast DNA extraction and real-time PCR and LAMP detection: evaluation using blood samples containing the bovine leukaemia DNA. Lett Appl Microbiol 2020;71:560-6. [PMID: 32852051 DOI: 10.1111/lam.13376] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Yue S, Zhao T, Qi H, Yan Y, Bi S. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosensors and Bioelectronics 2017;94:671-6. [DOI: 10.1016/j.bios.2017.03.071] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
9 Petralia S, Conoci S. PCR Technologies for Point of Care Testing: Progress and Perspectives. ACS Sens 2017;2:876-91. [PMID: 28750519 DOI: 10.1021/acssensors.7b00299] [Cited by in Crossref: 66] [Cited by in F6Publishing: 42] [Article Influence: 13.2] [Reference Citation Analysis]
10 van Belkum A, Rochas O. Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing. Front Microbiol 2018;9:1437. [PMID: 30008711 DOI: 10.3389/fmicb.2018.01437] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
11 Kim M, Lee JH, Nam JM. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv Sci (Weinh) 2019;6:1900471. [PMID: 31508273 DOI: 10.1002/advs.201900471] [Cited by in Crossref: 121] [Cited by in F6Publishing: 77] [Article Influence: 40.3] [Reference Citation Analysis]
12 Wang J, Liu J, Thomsen J, Selnihhin D, Hede MS, Kirsebom FCM, Franch O, Fjelstrup S, Stougaard M, Ho Y, Pedersen FS, Knudsen BR. Novel DNA sensor system for highly sensitive and quantitative retrovirus detection using virus encoded integrase as a biomarker. Nanoscale 2017;9:440-8. [DOI: 10.1039/c6nr07428f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kersting S, Rausch V, Bier FF, von Nickisch-rosenegk M. A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia. Analytical Biochemistry 2018;550:54-60. [DOI: 10.1016/j.ab.2018.04.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. Nano Res 2018;11:5439-73. [PMID: 32218913 DOI: 10.1007/s12274-018-2094-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
15 Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Reference Citation Analysis]
16 Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Mikrochim Acta 2018;185:285. [PMID: 29736588 DOI: 10.1007/s00604-018-2791-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
17 Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, Toyama A, Piepenburg O, Parker M, Wood R, Overbaugh J, Boyle DS. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One 2014;9:e108189. [PMID: 25264766 DOI: 10.1371/journal.pone.0108189] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 10.9] [Reference Citation Analysis]
18 Veltkamp HW, Akegawa Monteiro F, Sanders R, Wiegerink R, Lötters J. Disposable DNA Amplification Chips with Integrated Low-Cost Heaters. Micromachines (Basel) 2020;11:E238. [PMID: 32106462 DOI: 10.3390/mi11030238] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Qi H, Yue S, Bi S, Song W, Ding C. A versatile homogeneous chemiluminescence biosensing platform based on exonuclease-assisted hybridization chain reaction. Sensors and Actuators B: Chemical 2018;273:1525-31. [DOI: 10.1016/j.snb.2018.07.060] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
20 Petralia S, Cosentino T, Sinatra F, Favetta M, Fiorenza P, Bongiorno C, Sciuto E, Conoci S, Libertino S. Silicon nitride surfaces as active substrate for electrical DNA biosensors. Sensors and Actuators B: Chemical 2017;252:492-502. [DOI: 10.1016/j.snb.2017.06.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
21 Petralia S, Sciuto EL, Conoci S. A novel miniaturized biofilter based on silicon micropillars for nucleic acid extraction. Analyst 2017;142:140-6. [DOI: 10.1039/c6an02049f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 7] [Article Influence: 6.4] [Reference Citation Analysis]
22 Prabowo BA, Chang Y, Lai H, Alom A, Pal P, Lee Y, Chiu N, Hatanaka K, Su L, Liu K. Rapid screening of Mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B: Chemical 2018;254:742-8. [DOI: 10.1016/j.snb.2017.07.102] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
23 Abd El Wahed A, Weidmann M, Hufert FT. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 2015;69:16-21. [PMID: 26209370 DOI: 10.1016/j.jcv.2015.05.004] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 8.6] [Reference Citation Analysis]
24 Ha BH, Lee KS, Destgeer G, Park J, Choung JS, Jung JH, Shin JH, Sung HJ. Acoustothermal heating of polydimethylsiloxane microfluidic system. Sci Rep 2015;5:11851. [PMID: 26138310 DOI: 10.1038/srep11851] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
25 Leonardi AA, Lo Faro MJ, Irrera A. Biosensing platforms based on silicon nanostructures: A critical review. Anal Chim Acta 2021;1160:338393. [PMID: 33894957 DOI: 10.1016/j.aca.2021.338393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 Tsaloglou MN, Nemiroski A, Camci-Unal G, Christodouleas DC, Murray LP, Connelly JT, Whitesides GM. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings. Anal Biochem 2018;543:116-21. [PMID: 29224732 DOI: 10.1016/j.ab.2017.11.025] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 8.6] [Reference Citation Analysis]
27 Sciuto EL, Leonardi AA, Calabrese G, Luca G, Coniglio MA, Irrera A, Conoci S. Nucleic Acids Analytical Methods for Viral Infection Diagnosis: State-of-the-Art and Future Perspectives. Biomolecules 2021;11:1585. [PMID: 34827583 DOI: 10.3390/biom11111585] [Reference Citation Analysis]
28 Kaygusuz D, Vural S, Aytekin AÖ, Lucas SJ, Elitas M. DaimonDNA: A portable, low-cost loop-mediated isothermal amplification platform for naked-eye detection of genetically modified organisms in resource-limited settings. Biosens Bioelectron 2019;141:111409. [PMID: 31207569 DOI: 10.1016/j.bios.2019.111409] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
29 Mulberry G, White KA, Vaidya M, Sugaya K, Kim BN. 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLoS One 2017;12:e0179133. [PMID: 28586401 DOI: 10.1371/journal.pone.0179133] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
30 Miao B, Peng N, Li L, Li Z, Hu F, Zhang Z, Wang C. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection. Sensors (Basel) 2015;15:27954-68. [PMID: 26556354 DOI: 10.3390/s151127954] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
31 Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, Trau M, Botella JR. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 2017;15:e2003916. [PMID: 29161268 DOI: 10.1371/journal.pbio.2003916] [Cited by in Crossref: 94] [Cited by in F6Publishing: 74] [Article Influence: 18.8] [Reference Citation Analysis]
32 Chen T, Jia Y, Dong C, Gao J, Mak P, Martins RP. Sub-7-second genotyping of single-nucleotide polymorphism by high-resolution melting curve analysis on a thermal digital microfluidic device. Lab Chip 2016;16:743-52. [DOI: 10.1039/c5lc01533b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Utge J, Sévêque N, Lartigot-Campin AS, Testu A, Moigne AM, Vézian R, Maksud F, Begouën R, Verna C, Soriano S, Elalouf JM. A mobile laboratory for ancient DNA analysis. PLoS One 2020;15:e0230496. [PMID: 32187203 DOI: 10.1371/journal.pone.0230496] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Jayamohan H, Romanov V, Li H, Son J, Samuel R, Nelson J, Gale B. Advances in Microfluidics and Lab-on-a-Chip Technologies. Molecular Diagnostics. Elsevier; 2017. pp. 197-217. [DOI: 10.1016/b978-0-12-802971-8.00011-0] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
35 Saikrishnan D, Goyal M, Rossiter S, Kukol A. A cellulose-based bioassay for the colorimetric detection of pathogen DNA. Anal Bioanal Chem 2014;406:7887-98. [DOI: 10.1007/s00216-014-8257-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
36 Zhou X, Pan J, Ma Y, Peng X, Wu H, Zhou Q, Ding S, Ju H. An ultrasensitive fluorescence sensing strategy for detection and in situ imaging of chronic myeloid leukemia-related BCR-ABL1 mRNA. Sensors and Actuators B: Chemical 2018;273:1456-62. [DOI: 10.1016/j.snb.2018.07.032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
37 Park YM, Kim CH, Lee SJ, Lee M. Multifunctional hand-held sensor using electronic components embedded in smartphones for quick PCR screening. Biosensors and Bioelectronics 2019;141:111415. [DOI: 10.1016/j.bios.2019.111415] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Wang S, Huang B, Ma X, Liu P, Wang Y, Zhang X, Zhu L, Fan Q, Sun Y, Wang K. Reverse-transcription recombinase-aided amplification assay for H7 subtype avian influenza virus. Transbound Emerg Dis 2020;67:877-83. [PMID: 31714018 DOI: 10.1111/tbed.13411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Miao G, Zhang L, Zhang J, Ge S, Xia N, Qian S, Yu D, Qiu X. Free convective PCR: From principle study to commercial applications-A critical review. Anal Chim Acta 2020;1108:177-97. [PMID: 32222239 DOI: 10.1016/j.aca.2020.01.069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
40 Leonardi AA, Lo Faro MJ, Petralia S, Fazio B, Musumeci P, Conoci S, Irrera A, Priolo F. Ultrasensitive Label- and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. ACS Sens 2018;3:1690-7. [PMID: 30132653 DOI: 10.1021/acssensors.8b00422] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 8.8] [Reference Citation Analysis]
41 Lee J, Cheglakov Z, Yi J, Cronin TM, Gibson KJ, Tian B, Weizmann Y. Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. J Am Chem Soc 2017;139:8054-7. [DOI: 10.1021/jacs.7b01779] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
42 Howson ELA, Armson B, Lyons NA, Chepkwony E, Kasanga CJ, Kandusi S, Ndusilo N, Yamazaki W, Gizaw D, Cleaveland S, Lembo T, Rauh R, Nelson WM, Wood BA, Mioulet V, King DP, Fowler VL. Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform. Transbound Emerg Dis 2018;65:221-31. [PMID: 28758346 DOI: 10.1111/tbed.12684] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
43 Mohankumar P, Jagadeesh Babu V, Subramanian A, Bandla A, Thakor N, Ramakrishna S, Wei H. Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications. Sci 2019;1:37. [DOI: 10.3390/sci1020037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
44 Li RJ, Mauk MG, Seok Y, Bau HH. Electricity-free chemical heater for isothermal nucleic acid amplification with applications in COVID-19 home testing. Analyst 2021;146:4212-8. [PMID: 34075937 DOI: 10.1039/d1an00309g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]